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ABSTRACT 

In this thesis, the principals of Software Defined Radio are demonstrated by 

implementing a Binary Frequency Shift Keying (BFSK) receiver-transmitter in a Field 

Programmable Gate Array (FPGA). After introducing the theory behind the Non-

Coherent BFSK demodulation implemented at the receiver, the design of both transmitter 

and receiver is illustrated. The design environment of choice is Mathworks’® Simulink 

and Xilinx® System Generator, a dedicated library for Mathworks’ Simulink. The design 

is downloaded to a Virtex-4 FPGA.  

The receiver is Non-Coherent (NC) in the sense that the receiver need not know 

the phase of the incoming signal. A feedback circuit is responsible for both packet and bit 

synchronization. Also, the receiver is implemented using non-coherent match filters 

instead of low pass filters which would be easier, but would degrade the performance. 

Finally, some interesting experiences that were gained during the learning process are 

discussed. 

In Appendix A, we evaluate different technological options in implementing 

communication modulating techniques and Software Defined Radio. These options 

include Digital Signal Processors, Field Programmable Gate Arrays, General Purpose 

Processors and Application Specific Integrated Circuits and a comparison between these 

choices is made. 
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EXECUTIVE SUMMARY 

Software Defined Radio (SDR) is a new and fascinating idea having its roots in 

the early’90’s. Technologic constraints prevented this idea from becoming a reality at the 

beginning, but the development of powerful Field Programmable Gate Arrays (FPGAs) 

has increased interest in the SDR concept. FPGAs combine versatility, reconfigurability 

and upgradability that is hard to find in any other device. 

A simple way to make Software Defined Radio a reality is to store transceiver 

designs for many modulation schemes in memory and download the selected one to an 

FPGA as needed. This goal is accomplished when transceivers for all modulation 

schemes and services of choice are designed and synthesized for the target FPGA. 

Starting this procedure, a Binary Frequency Shift Keying transmitter and receiver design 

is the main purpose of this thesis. 

BFSK is the modulation that uses two different frequencies for the binary 0 and 

binary 1 symbols of the input stream. This modulation is simple but there are still many 

challenges for the timing synchronization of the receiver. A non-coherent receiver was 

chosen to eliminate the need for phase synchronization. The description of such a 

receiver along with the timing issue is addressed in Chapter II. Given that Forward Error 

Correction is used in the transceiver design, an introduction of convolutional encoding is 

also given in Chapter II. 

To make a good design, the proper software must support the effort. System 

Generator is a program available by Xilinx to help the designing of a project, offering an 

environment familiar to most engineers, namely Mathworks’ Simulink with a complete 

library of synthesizable blocks. This program is supported by the Integrated Software 

Environment (ISE) Design Suite, which is the Xilinx software that accepts the code 

generated by System Generator and continues the task of implementing the design to the 

FPGA and testing the resulting downloaded design. A more complete description is 

included in Chapter III. 



 xiv

The transmitter and receiver design made under System Generator is presented in 

Chapter IV.  A preamble is attached before each packet to facilitate the synchronization 

of the receiver. Before that happens, the message bits are encoded using convolutional 

encoding. Then output bits of these procedures are transmitted based on the general rule 

of the BFSK modulation scheme where binary zeros and ones correspond to two different 

frequencies. The receiver uses non-coherent matched filters to extract the transmitted bits 

from the received waveform. Also, there exists a timing circuit that provides the bit and 

packet synchronization. Finally, the preamble is stripped off and the remaining bits are 

inserted to a Viterbi decoder that yields the message bits. 

The verification of the design follows in Chapter V. This is carried out in the 

System Generator environment, by examining the signal at different points in the design, 

and in using Matlab code that simulates part of the receiver. The results are shown and 

the design can be considered successful. The problems that were encountered during the 

design are also addressed in the second half of this chapter.  

A closer look at current FPGA technology is included in Appendix A. Different 

technological options in implementing communication modulating techniques and 

Software Defined Radio are discussed. These options include Digital Signal Processors 

(DSP), Field Programmable Gate Arrays, General Purpose Processors (GPP) and 

Application Specific Integrated Circuits (ASICS) and a comparison between these 

choices is made. The results of the comparison are that a heterogeneous design that 

includes all three of a DSP, a GPP and an FPGA can provide the maximum performance 

and versatility. DSPs are better performing in sequential logic, whereas FPGAs are more 

efficient in executing parallel tasks. GPP are used in supporting the different network 

protocols and other similar tasks. 

A lower level description compared to the design flow of Chapter IV of each 

block is included in Appendix B. The reason for many choices made in the parameters 

window of every block is mentioned next to the actual value of the parameter. In this 

way, the rebuilding of the design can be made solely based on this appendix. In the same  
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time, further insight into the dependence of the desired results upon the chosen 

parameters is provided. In Appendix C, the Matlab code that helped the verification of 

the receiver design is included. 
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I. INTRODUCTION  

A. BACKGROUND ON SOFTWARE-DEFINED RADIO 

A software radio is a radio which uses programmable hardware.  Software is used 

to configure the hardware to meet different communication scheme specifications as well 

as to support several different services. According to J. Mitola (1993) “a software radio 

(SR) is a set of Digital Signal Processing (DSP) primitives, a metalevel system for 

combining the primitives into communications systems functions (transmitter, channel 

model, receiver . . .) and a set of target processors on which the software radio is hosted 

for real-time communications [1].” This concept is in contrast to common radio devices 

implemented in specific hardware, which provide a limited capability of switching 

between modulation schemes and services, mainly due to the static hardware used. An 

ideal SR receiver directly samples the antenna output. A software-defined radio (SDR) is 

a practical version of an SR. The received signals are sampled after a suitable band 

selection filter and frequency down conversion [2].  

The flexibility and reconfigurability demonstrated by the SDR have become a 

reality largely due to the evolution of digital electronics processes defined in software 

instead of using static and application specific integrated circuits such as mixers, filters, 

amplifiers, modulators, demodulators, and detectors. 

The concept of SDR has progressed further because of the advancement of Field 

Programmable Gate Arrays (FPGAs) and is currently a field of intensive research, even 

though the FPGAs are not the only platform upon which SDR can be based. General 

Purpose Processors (GPPs) and dedicated Digital Signal Processing (DSP) chips provide 

an alternative to FPGAs, having their own pros and cons. Nevertheless, the versatility 

that FPGAs demonstrate makes them unique in many aspects. 

B. GOALS OF RESEARCH AND CONCEPTS 

Recent technological advancements have allowed FPGAs to transform from an 

auxiliary device to a signal processing engine. Nowadays, not only can FPGAs compete  
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with dedicated circuits, but also they give life to sectors of science that need their 

versatility. They have enhanced the Software Defined Radio concept, which is a great 

advancement versus the normal Radio concept.  

The main goal of this research is the design of a Binary Frequency Shift Keying 

(BFSK) transmitter and receiver. The BFSK modulation is used for the illustration of the 

techniques in designing a communication system in FPGAs. The reason is that BFSK is a 

simple, but robust modulation that can be received non-coherently. The design process 

also helps acquiring a greater experience in the design of FPGAs using some of the easier 

to use but powerful schematic, synthesis and place and route tools available today. 

The second goal of the research is to track the advancements made in the field of 

FPGAs and inform on the usefulness and possible implementations of FPGAs. 

C. METHODOLOGY AND SCOPE OF THE RESEARCH 

Xilinx’s System Generation 10.1 SP2 is the schematic tool used to design a BFSK 

transceiver. After verifying that the design worked correctly, the code of the design was 

automatically generated by System Generator and the code was loaded into the Integrated 

Software Environment (ISE™) to be synthesized, placed and routed, and finally 

downloaded to the target FPGA, which is a Xilinx’s Virtex-4. Nevertheless, the 

verification of the implementation on the chip was not done due to time constraints. 

The main challenge to the design is to achieve the synchronization required in 

order for the receiver to be able to distinguish the beginning and end of different packets 

of incoming data. The length of the packet was chosen to be fixed at 128 bits and the first 

8 bits compose the preamble that facilitates the bit synchronization and packet detection.  

D. BENEFITS OF THE RESEARCH 

The concept of Software Defined Radio is fascinating but complex. Designing 

different modulation schemes that can be downloaded to an FPGA is an easy way to 

design a simple Software Defined Radio. On the other hand, all digital modulations share  
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the same basic principles; thus, synchronization techniques from one modulation can be 

borrowed and modified to work with another modulation scheme. A fully working digital 

BFSK transceiver is simulated in this thesis. 

The research made regarding FPGAs unveiled the fact that while technology is 

changing, some arguments, like power consumption, that were once against the use of 

FPGAs, may be today their strong point. The system designer must always be up-to-date 

and adaptive regarding new technologies since FPGAs are going to be used more 

extensively in the future [3].  

E. ORGANIZATION OF THE THESIS 

Chapter II includes background regarding Binary Frequency Shift Keying. A 

Non-Coherent BFSK receiver is presented in order to facilitate the understanding of the 

design that was implemented in an FPGA. Also, the concept of convolutional encoding is 

introduced. 

Chapter III contains the description of the design environment used, namely 

Xilinx’s System Generator, ISE and ChipScope Pro along with the characteristics of the 

board used for the design. The high level of maturity and the friendly interface of the 

software product played a key role in the successful completion of the whole project. 

Chapter IV gives a detailed description of the software design of a BFSK 

transmitter and receiver. The description includes the logic for the design choices that 

were made, the reason behind the choice of specific components, and the explanation of 

the function of many blocks. 

Chapter V discusses the results taken by simulation in the design environment. 

Input and output are compared using Matlab and the correctness of the results is 

discussed. 

Chapter VI includes an outline of the work made, the significant results taken, the 

limitations of the design, and recommendations for future work. 
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In Appendix A, an extensive background regarding FPGAs is given, explaining 

that they are well suited for Software Defined Radios. FPGA’s positive and negative 

aspects are mentioned and are compared with General Purpose Processors, Digital Signal 

Processors and Application Specific Integrated Circuits. 

In Appendix B, a detailed description of the design is given in a per figure and per 

block basis. Reading Appendix B in parallel with Chapter IV provides a better 

understanding of the blocks and the reason they were used. 

In Appendix C, the Matlab code used to verify the results taken by System 

Generator is shown. 

In this chapter, the concept of Software Defined Radio was introduced. The idea 

of SDR is realized by building a BFSK transceiver using an FPGA. In order to provide a 

solid background to facilitate understanding the design, the next chapter discusses BFSK 

modulation and demodulation and convolutional encoding. 
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II. BINARY FREQUENCY SHIFT KEYING MODULATION 
SCHEME AND CONVOLUTIONAL ENCODING 

BFSK is a basic digital modulation scheme. Its concept is not presented in depth, 

but can be found in any introductory textbook concerning communications. The textbook 

used as a reference for this brief introduction is [4, p. 198] along with [5], which both 

include a detailed description of the BFSK modulation scheme and a BFSK receiver. An 

introduction to convolutional encoding is also given at the end of this chapter.  

A. BFSK MODULATION 

In BFSK, two distinct frequencies are chosen to represent the two possible values 

of a bit.  The equation that describes the transmission signal s of the thi  bit that is 

produced by this modulation technique is the following [5]: 

 ( )( ) 2 cos 2 ,    for ( 1)
2c c i b b
fs t A f b t t iT t i Tπ θ⎡ ⎤Δ⎛ ⎞= + ⋅ + ≥ ≥ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (2.1) 

where Tb is the bit duration, Ac is the carrier’s amplitude, fc is the mean signaling 

frequency in Hz, b(t) is the value of the transmitted bit in bipolar form where 1 

corresponds to bit 1 and -1 corresponds to bit 0, fΔ  is the frequency separation of the 

two frequencies, and θi is the thi  bit phase. 

A BFSK receiver is distinguished by coherent or non-coherent depending if the 

knowledge of the phase information of the received signal is prerequisite for the receiver 

to work properly. In this thesis, the receiver of choice is non-coherent which decreases 

the complexity of the receiver circuit, eliminating the need for an extra circuit that would 

acquire the phase information. The configuration that allows the realization of a Non-

Coherent (NC) reception is the energy detector. A diagram of a NC BFSK receiver is 

shown in Figure 1 [5].  
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Figure 1 Block diagram of a NCBFSK receiver (From: [5]). 

The received signal is distributed in two distinct paths, one for each frequency.  

To each path, the signal is further divided among two branches; one branch is configured 

to detect the in-phase (I) signal and the other branch the quadrature (Q) signal of the 

respective frequency. Each branch consists of a mixer, an integrator and the squaring 

function. Both branches and the summer at their end consist of a non-coherent matched 

filter. The term non-coherent matched filter means that this filter does not try to match 

the carrier phase, but only the envelope of the signal [5, pp. 256-258].   

The structure is self similar, thus, the analysis made for the case of bit ‘1’ 

transmitted is exactly inverse to the case of bit ‘0’ transmitted. For a bit ‘1’ transmitted, 

the input to the integrator of the top path is given by [5]: 

 

( )

1 ( ) = 2 ( ) cos
2

2 2 cos cos
2 2

2 cos cos 2
2

.

i c

c c i c

c i c i

r t s t t

A t t

A t

ωω

ω ωω θ ω

ωθ ω θ

⎡ ⎤Δ⎛ ⎞+⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤ ⎡ ⎤Δ Δ⎛ ⎞ ⎛ ⎞= + + ⋅ +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎧ ⎫⎡ ⎤Δ⎛ ⎞= + + +⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭

 (2.2) 

Similarly, the input to the other integrator in the top non-coherent matched filter is 
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( )

1 ( ) = 2 ( )sin
2

2 2 cos sin
2 2

2 sin sin 2 .
2

q c

c c i c

c i c i

r t s t t

A t t

A t

ωω

ω ωω θ ω

ωθ ω θ

⎡ ⎤Δ⎛ ⎞+⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤ ⎡ ⎤Δ Δ⎛ ⎞ ⎛ ⎞= + + ⋅ +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎧ ⎫⎡ ⎤Δ⎛ ⎞= − + + +⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭

 (2.3) 

The integrator outputs for the two branches of the top path are: 

 
( )

( )
( ){ }1

cos sin 4 / 2
( ) = 2 cos

4 / 2 sin cos 4 / 2 1i

i c b
b

b c i
c i c b

f f TRX T A
f f f f T

θ π
θ

π θ π

⎧ ⎫⎡ ⎤⎡ ⎤⋅ + Δ +⎣ ⎦⎪ ⎪⎢ ⎥+⎨ ⎬+ Δ ⎢ ⎥⎡ ⎤+ Δ −⎪ ⎪⎣ ⎦⎣ ⎦⎩ ⎭

i  (2.4) 

for the I channel, and 

 
( )

( )
( ){ }1

sin sin 4 / 2
( ) = 2 sin

4 / 2 cos cos 4 / 2 1q

i c b
b

b c i
c i c b

f f TRX T A
f f f f T

θ π
θ

π θ π

⎧ ⎫⎡ ⎤⎡ ⎤⋅ + Δ +⎣ ⎦⎪ ⎪⎢ ⎥− +⎨ ⎬+ Δ ⎢ ⎥⎡ ⎤+ Δ −⎪ ⎪⎣ ⎦⎣ ⎦⎩ ⎭

i (2.5) 

for the Q channel. 

If the right conditions are met, the above expressions are simplified. Thus, when 

cf  is chosen to be an integer multiple of half the bit rate bR and fΔ  is chosen to be an 

integer multiple of the bit rate bR , where 1
b

b

R
T

= , only the first terms of the above 

expressions are non-zero. These conditions are known as orthogonal signaling [3, pp. 

200-204]. Following that restriction, the outputs of the integrators of the top NCMF are: 

 1 ( ) = 2 cos
i b c iX T A θ⋅  (2.6) 

and 

 1 ( ) = 2 sin
q b c iX T A θ− ⋅ . (2.7) 

The outputs of the squaring block are 

 2 2
1 ( ) = 2 cos

i b c iV T A θ⋅  (2.8) 

and 

 2 2
1 ( ) = 2 sin

q b c iV T A θ⋅ . (2.9) 

Summing the outputs of the two branches yields 
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 2 2 2 2
1( ) = 2 (sin cos ) 2b c i i cV T A Aθ θ+ =  (2.10) 

as the output of the top path.  The output of the I-channel mixer in the bottom NCMF in 

Figure 1 is 

 

( ) ( )

2 ( ) = 2 ( ) cos
2

2 2 cos cos
2 2

2 cos cos 2 .

i c

c c i c

c i c i

r t s t t

A t t

A t t

ωω

ω ωω θ ω

ω θ ω θ

⎡ ⎤Δ⎛ ⎞−⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤ ⎡ ⎤Δ Δ⎛ ⎞ ⎛ ⎞= + + ⋅ −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎡ ⎤= Δ ⋅ + + +⎣ ⎦

 (2.11) 

The output of the Q-channel mixer in the bottom NCMF in Figure 1 is 

 

( ) ( )

2 ( )  = 2 ( )sin
2

2 2 cos sin
2 2

2 sin sin 2 .

q c

c c i c

c i c i

r t s t t

A t t

A t t

ωω

ω ωω θ ω

ω θ ω θ

⎡ ⎤Δ⎛ ⎞−⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤ ⎡ ⎤Δ Δ⎛ ⎞ ⎛ ⎞= + + ⋅ −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎡ ⎤= − Δ ⋅ + + +⎣ ⎦

 (2.12) 

The outputs of the integrators of the bottom NCMF are 

 
( ) ( )

( ) ( ){ }
2

cos sinsin 2 cos 2 1
2( ) =

12 cos sin 4 sin cos 4 1
2

i

i i
b

c b
b

i c b i c b
c

f T f T
f fA RX T

f T f T
f

θ θπ π

π θ π θ π

⎧ ⎫⎡ ⎤Δ ⋅ + Δ ⋅ − +⎣ ⎦⎪ ⎪Δ Δ⎪ ⎪
⎨ ⎬
⎪ ⎪⎡ ⎤⋅ + −⎣ ⎦⎪ ⎪⎩ ⎭

 (2.13) 

for the I-channel, and 

 
( ) ( )

( ) ( ){ }
2

sin cossin 2 cos 2 1
2( ) =

12 sin sin 4 cos cos 4 1
2

q

i i
b

c b
b

i c b i c b
c

f T f T
f fA RX T

f T f T
f

θ θπ π

π θ π θ π

⎧ ⎫⎡ ⎤− Δ ⋅ + Δ ⋅ − +⎣ ⎦⎪ ⎪Δ Δ⎪ ⎪
⎨ ⎬
⎪ ⎪⎡ ⎤⋅ − −⎣ ⎦⎪ ⎪⎩ ⎭

 (2.14) 

for the Q-channel. 

If orthogonal signaling is chosen, i.e., =  bf mRΔ and 
2

b
c

Rf n= where n  and m  

are integers, the outputs of the integrators in the bottom NCMF simplify to 2 ( ) = 0
i bX T  

and 2 ( ) = 0
q bX T . This in turn yields  

 



 9

 2 ( ) = 0bV T  (2.15) 

and using equation (2.10) and (2.15) the output of the subtraction of the paths is 

 2
1 2 2 cV V A− = . (2.16) 

For the case that bit ‘0’ is transmitted, the whole process is inverted and the 

respective outputs of the two paths would be 1( ) = 0bTυ , and 

2 2 2 2
2 ( ) = 2 (sin cos ) 2b c i i cT A Aυ θ θ+ = . Hence, the output of the subtraction of the two 

paths is now 22 cA− . Sampling the final output at the end of the duration of each bit 

reveals the value of the transmitted bit. 

It is obvious that this implementation relies heavily on proper bit synchronization, 

which means that the receiver should know the exact duration of each bit and when each 

bit ends. To acquire this information an extra circuit is needed and when the timing 

information is incorrect, severe degradation of the performance of the receiver may 

result. Many Time Error Detectors (TEDs) for discrete time implementations are 

presented in [6], including the Early-Late TED, the Zero Crossing TED, and the Gardner 

TED. 

In summary, the energy of the two branches of each path are added and compared 

to the energy of the other path. The decision made about the received bit is in favor of the 

bit that corresponds to the frequency of the path with the highest energy. In order to 

minimize the cross product of energies, the frequencies used must be orthogonal which 

implies a tone spacing that is a multiple of the bit rate and a center frequency that is a 

multiple of half the bit rate [5]. 

B. CONVOLUTIONAL ENCODING 

Encoding in digital communications is used for forward error correction. The 

convolutional codes are one of the two most commonly used along with block codes. 

They were introduced in 1955 by Elias [7]. 

Convolutional codes are characterized by the code rate kr
n

= , where k is the 

length of the input word and n  is the length of the output word, and by the memory order 
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m . The memory order m  is the number of memory elements that are included in the 

encoder and is a crucial parameter of the performance of a code. Each code can be 

uniquely described by a matrix with octal numbers as elements. The number of columns 

in this matrix corresponds to the n  parameter and the number of rows to the k  

parameter. The actual value of the octal number reveals the interconnections that yield 

the respective output, counting in binary from right to left. In the example taken from [8], 

in Figure 2, we can identify an 1
2

r =  code with a convolutional code array of [133,171]. 

The number 133 is the octal equivalent of binary 1011011 and corresponds to output 1C  

and 171 is the octal equivalent of binary 1111001 and corresponds to output 0C . This 

specific code is an industry standard code for 6m = . The constraint length κ  for the case 

of 1k =  is  = 1mκ + . In this thesis, the industry standard convolutional code for 1
2

r =  

and  = 3κ , namely [7 5], is used. 

 

Figure 2 Convolutional Encoder Block Diagram of code rate 1
2

r =  and 7κ = . 

Convolutional encoded streams are usually decoded by Viterbi decoders, invented 

by Viterbi [9]. Viterbi decoders implement maximum likelihood decoding with a slight 

performance penalty due to finite decoder memory [10].  
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This chapter has explained the fundamental principles required to understand the 

NCBFSK transmitter and receiver design detailed in the remainder of this document. The 

next chapter describes the software and hardware design tools used in this design effort.  
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III. DESIGN ENVIRONMENT 

Xilinx offers a full suite of programs that provides an integrated development 

environment for its FPGAs. This suite is named Integrated Software Environment (ISE) 

Design Suite and the main programs that are included are System Generator for DSP, ISE 

Project Navigator, ChipScope Pro Tool, PlanAhead and AccelDSP Synthesis Tool [11]. 

Not all of these tools were used because each program has a very specific functionality, 

some of which were not needed. System Generator was used as the main design entry and 

simulation program and ISE Project Navigator as the program that implements the design 

into the targeted Xilinx device.  

A. SYST EM GENERATOR 

System Generator is a FPGA design program that offers the necessary libraries of 

blocksets, making use of the Mathworks’ Simulink design environment. Simulink is a 

schematic tool that is part of Matlab and is known for its efficiency and ease of use 

among engineers. For this reason, System Generator (Sysgen) chose this environment to 

offer the system modeling, making available the mixing of components from Simulink 

and Sysgen for simulation purposes (Figure 3). Sysgen also provides automatic code 

generation that can be then downloaded to Xilinx’s FPGAs. The Hardware Description 

Language (HDL) that is used during code generation can be chosen from the Sysgen 

token and is either VHDL or Verilog [12].  

The blocks offered by Sysgen are guaranteed to be synthesizable, solving a great 

problem for the designer. Blocks are schematic components that implement primitive 

functions and offer the option of default along with customizable inputs and outputs that 

can be interconnected. More complex blocks exist as well, yielding the opportunity to 

construct a complex design without much effort. A full list and description of all the 

available blocks is included in [13] and a more technical description of the Intellectual 

Properties blocks is included in [14]. Most of these blocks are DSP related and only a few 

are dedicated to communications. In the later case, an extra license is usually needed in 

order for them to integrate into the design. Their color is green by default and is clearly 
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shown in Figure 3. The block ‘System Generator’ is mandatory to every design and the 

blocks ‘Gateway In’ and ‘Gateway Out’ define the limits of the design that are going to 

be translated in an FPGA circuit. The current version of Sysgen is 10.1 with Service Pack 

2. 

Figure 3 illustrates a very simple example, where a Finite Impulse Response 

(FIR) Filter is designed. The input is supplied by Matlab and the output is viewed by 

double clicking on the ‘Scope.’ The parameters of the single Xilinx block used are 

defined in the respective window that appears when the FIR block is selected. Neither of 

the Simulink blocks, ‘From Workspace’ and ‘Scope,’ are synthesizable. They are only 

used during the design phase for simulation purposes.  

Other parameters that are common to many Sysgen blocks are the format and 

width of the output values [13, p. 44]. There are blocks dedicated to manipulate the data 

type and alter their internal structure. For example, the Enable and Reset signal are only 

allowed to be Boolean, thus an unsigned one bit integer must be reinterpreted as a 

Boolean number. This is accomplished by the blocks ‘Reinterpret’ or ‘Convert.’ 

 

Figure 3 Example of the environment and the blocks offered by Sysgen. 
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Another block of special use is ‘MCode’ [13, p. 239]. It allows writing a program 

in Matlab and saving it in the block. Then, Sysgen is responsible for synthesizing this 

program. There are many constraints regarding the commands that can be used in such a 

program. As an example, the division by a number different from a power of two is not 

supported. Nevertheless, this block is very useful to describe state machines, and as such, 

it has been used many times in the BFSK design.  

B. ISE PROJECT MANAGER 

After finishing with the design and generating the code for the HDL language of 

choice via Sysgen, the source file is loaded into the ISE Project Manager as a project. 

This Manager is responsible for the synthesis, implementation, and verification of the 

design and the target device configuration [15]. 

After loading a project created by Sysgen, source files can be added, created or 

modified. Other available processes under the Processes Window, as shown in the left 

column in Figure 4, are as follows: 

• Add timing constraints or define Input Output (IO) pins under User 
Constraints choice.  

• Synthesize the project or generate post-synthesis simulation under 
Synthesize –XST. At this step HDL programs are converted to netlist files 
that are used by the implementation step. 

• Translate the logical design (netlist file) to a physical file format, to make 
the mapping of the design to the FPGA, and to place and route the 
mapping to the FPGA of choice under Implement Design choice. The 
placement step includes the decision made by the program regarding 
where to place the logic elements given the internal structure of the target 
device. Then, routing is responsible for finding the optimized connecting 
paths between these placed components. 

• Generate the programming file that will be installed into the FPGA  under 
Generate Programming File, 

• Configure Target Device, and 

• Use the ChipScope Pro program to verify the actual implementation into 
the FPGA under Analyze Design Using Chipscope. Every step of the 
implementation process described above has its own tools for testing and 
simulating the design. ChipScope is responsible to check the functionality 
of the final design installed into the FPGA. 
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Figure 4 Project Navigator Main Window. 

C. AVNET BOARD 

The mainboard to be used for the project is designed by AVNET and is called the 

Xilinx® Virtex™-4 LX LC Development Kit interconnected with the Analog to Digital 

(A/D) and Digital to Analog (D/A) Converter P160 provided by Avnet as well.  

The mainboard’s key features are the Virtex XC4VLX25 FPGA, 10/100 Ethernet 

interface and 64 MB Double Date Rate (DDR) Synchronous Dynamic Random Access 

Memory (SDRAM). The Virtex XC4VLX25 is a low entry FPGA of the Virtex-4 family 

and contains 24,192 logic cells and 48 dedicated DSP cells called XtremeDSP (18-bits x 

18-bits, two’s complement, signed Multiplier). It is manufactured using the 90nm Copper 

CMOS Process and it has no possibility of using the embedded soft processor PowerPC 

405 core, due to size constraints [16]. The Analog Module P160 features two 12-bit 53 
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Msps A/D converters and two 12-bit 165 Msps D/A converters yielding much flexibility 

for the design [17]. Nevertheless, this module has not been used in any test in this 

research, mainly due to time constraints. The description of its pins and interfaces is in 

[18]. 

The literature recommended for the Sysgen and ISE is limited to the Xilinx 

Manuals. These manuals are included in a help guide offered by Xilinx as an internet-

accessible Acrobat file [19]. For System generator there is also a manual that includes 

introductory labs and block and program reference manuals in its support page under the 

documentation tab and the Design Tool choice [20]. Extensive documentation of the most 

complex blocks is given in the same page under the IP Cores choice [21]. For the ISE 

project manager the documentation can be reached through the help guide stated above 

after choosing ‘ISE Help’ [15]. 

Sysgen and ISE Project Manager were extensively used for the design and the 

generation of the programming file of the non-coherent Binary Frequency Shift Keying 

Transmitter-Receiver presented in the next chapter. The plethora of tools offered by these 

programs made the design straight-forward, compared to writing directly to an HDL 

language. Xilinx is also supporting its programs online, making the troubleshooting 

easier. 
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IV. DESIGN FLOW 

In this chapter, the logic flow of the design is discussed in detail. The basic 

principles of the BFSK transmitter and receiver illustrated in Chapter II are implemented 

in Simulink using Xilinx’s blocks. The transmitter and receiver are separated into two 

different designs. The design is further exemplified in a per figure and per block basis in 

the Appendix B, where key parameters and Matlab code, where applicable, are also 

given.  

A. TRANSMITTER 

The transmitter, illustrated in Figure 5, is the combination of three distinct parts: 

the preamble, the data input and the modulation circuitry. The data is transmitted in 

blocks of 120 bits. An eight bit preamble with pattern 10101001 is attached in front of 

every packet to facilitate packet synchronization at the receiver. For simulation purposes, 

Simulink’s blocks ‘From Workspace’ and ‘To Workspace’ were used to supply the 

design with input bits and store them, respectively. The results were also visually verified 

at each stage using ‘Scope’ blocks. 

preamble with sequence
10101001 . Every 128 channel *

bits repeat the sequence

first select the 
preamble , then the

input sequence . Repeat 
every 128 bits .

*Note : from the 128 bits , 8 are the preamble and 60 (doubled by the convolver ) are the actual info bits .
Channel bits are defined the preamble plus the the output bits of the convolutional encoder .

Exception is the last packet includes only 58 info bits in order to accommodate 4 trail bits
To Workspace simout

Resource
Estimator Reset

 In 

Preamble Subsystem

reset

preable_invalid

preamble_seq

read_out

Mux 1

sel

d0

d1

  z-1

Modulation Subsystem

channel bits

reset

modulated signal

Gateway Out
 Out 

Gateway In
 In 

From
Workspace

[(0:1901 )*T ;1 a 0]'

Data Input Subsystem

read_enable

data_in

reset

data_seq

System
Generator

 

Figure 5 Transmitter’s schematic diagram designed in Simulink/Sysgen environment.  



 20

1. Preamble Subsystem 

The Preamble Subsystem (Figure 6) is responsible for the attachment of the 

preamble at the start of each packet. This subsystem is also responsible for the blocking 

of data bits whenever the preamble is transmitted and controlling the multiplexer ‘Mux 1’ 

in Figure 5, which selects the data or the preamble.  

The counter drives two blocks. It counts up to 127 and restarts from 0. While the 

counters output is seven or less, the preamble is valid and is read out to the modulation 

subsystem via the multiplexer ‘Mux1’ in Figure 5. The ‘read_out’ and ‘preamble_invalid’ 

are low and the output of the counter is directly translated to an address in the ‘ROM’ 

block. The content of this address appears at ‘ROM’ output and again through the 

‘Mux1’ in Figure 5 to the Modulation Subsystem. ‘Mux1’ is switched in the correct 

position by ‘preamble_invalid’ signal. ‘Read_out’ is responsible to block the message 

bits and let them be stored in a memory while the preamble is transmitted. The signals 

‘preamble_invalid’ and ‘read_out’ take the same values and have different names merely 

for illustration purposes. 

storage of the 
preamble
 sequence

Counts up to 7 before 
 release the transmittion of info bits

Note :From each info bit , 
I get 2 channel bits (due 

to convolutional code 1/2).
That is why the preamble 's 

clock is set at twice the speed .

read _out
3

preamble _seq
2

preable _invalid
1

Relational 1

a
b

a>b
z-1

ROM

addr z-1

Counter 1

rst out

Convert 1

cast

Constant

7

reset
1

 

Figure 6 Preamble Subsystem. 
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2. Data Input Subsystem 

The Data Input Subsystem (Figure 7) is responsible for the convolutional 

encoding of the input sequence with a rate 1
2

r =  code and the subsequent storage of the 

encoded bit in a First In First Out (FIFO) memory. The two streams created by the 

‘Convolutional Encoder’ block merge back into one stream by the ‘Concat’ and ‘Parallel 

to Serial’ blocks. It should be noted that these two last blocks can be replaced by a ‘Time 

Division Multiplexer’ block. The bit period of the final stream is half the period of the 

message bits due to the encoding with rate 1
2

r = . In the ‘Convolutional Encoder’ 

parameters window, the constraint length was set to 3, meaning that the encoder is using 

a register of two flip-flops. The encoding vector of choice was [7 5], as explained in 

Section B in Chapter II. 

Or Time Division Multiplexer

data _seq
1

T3
T2

T1

T

Parallel to Serial

p s

FIFO

din

we

re

rst

dout

empty

%full

full

Convolutional Encoder v 6_0 

din

vin

rst

dout 0

dout 1

vout
Constant 2

1 Constant 1

1
Concat

hi

lo

reset

3

data _in

2

read _enable1

 

Figure 7 Data Input Subsystem. 

After being stored in the ‘FIFO’ memory, the data waits for the enable signal of 

the Preamble Subsystem in order to exit. At the same time, the multiplexer ‘Mux1’ in 

Figure 5 is switched to the correct position to allow the promulgation of the input data to 

the last subsystem. Each bit produces an FSK symbol of duration 64 samples in the 

Modulation Subsystem. This parameter can generally be adjusted from the panel of the 

blocks under the title ‘Explicit sample period.’ 
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3. Modulation Subsystem 

The modulation subsystem, illustrated in Figure 8, uses each bit that appears at its 

entrance to choose between the two frequencies. This is accomplished by a multiplexer 

‘Mux,’ where the selection pin (sel) is driven by the forwarded bits and the multiplexer 

data inputs are driven by two Direct Digital Synthesizers (DDSs). Each DDS generates a 

sine wave at one of the two frequencies for the BFSK signal. The DDS is a digital 

sinusoid generator and can produce frequencies up to half the frequency at which the 

DDS core will be clocked, i.e., the DDS clock rate, in order not to exceed the Nyquist 

frequency [22]. For the Xilinx Virtex-4, which can achieve clock speeds of 500 Mhz 

[23], the limit for the output frequency of the DDS is 250 Mhz when the DDS clock rate 

is set to the maximum possible frequency. Nevertheless, much lower frequencies were 

used and the frequencies for 1 and 0 are 45 MHz and 40 MHz, respectively. Given that 

the encoded bit rate of choice is 1.5625R Mbps= , the two frequencies are not orthogonal 

based on the definition given in Section A in Chapter II. Even though this design choice 

may degrade the performance in a noisy environment, it does not have any noticeable 

impact in the noiseless analysis that follows. The ‘Shift’ block plays the role of 

amplification, multiplying the signal before transmission by a factor of four. Pulse 

shaping is not used in this design. 

if 0 select the frequency
of input d 0, else choose

frequency of input d 1

Only to avoid some
undefined inputs during the

 initialization time .

State_machine : Waits for the first 1 of the preamble in order to enable the mux .

modulated signal
1

Shift

X << 2
z-0

Mux

sel

d0

d1

en

  z-1

MCode 1

din
reset enablestate _machine

DDS Compiler for 1s

cos

DDS Compiler for 0s 

cos

reset
2

channel bits
1

 

Figure 8 Modulation Subsystem. 
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The ‘Mcode 1’ in Figure 8 is used for initiation. During the beginning of the 

simulation, many signals inside the blocks start in undefined states and other blocks, like 

the multiplexer, cannot propagate these kinds of signals. A block that would enable the 

multiplexer after the propagation of the undefined signals was needed, without affecting 

the overall performance of the designs. Usually, a constant enable signal is used along 

with a delay measured exactly to overcome this problem. A very simple Matlab program 

was written that takes advantage of the fact that the first bit of the preamble is 1. Upon 

detection of the first 1 to the channel, the ‘MCode 1’ enables the multiplexer without any 

further interruption. It should be noticed that the command xfix({xlBoolean},0) 

was used in the program in order to avoid the use of a ‘Convert’ block. Otherwise, any 

value assigned as 0 or 1 in a Matlab Code is translated to an unsigned integer and cannot 

be used as it is to drive the enable port (en) of the ‘Mux.’ The xfix( ) command explicitly 

converts to the type described as the first argument. In this case, the value 0 is assigned as 

a Boolean type and not as an integer [13, p. 243]. 

B. RECEIVER 

The non-coherent BFSK receiver is illustrated in Figure 9. The choice of a Non-

Coherent (NC) receiver design was made to eliminate any need for an extra circuit that 

would extract the phase information from the received signal. The receiver consists of the 

following subsystems: the two Correlators, the Decision Circuit, the Timing Circuit, the 

two Non-Coherent Matched Filters and the Decoding Subsystem. The Correlators [24] 

and the Timing Circuit form the feedback path and the Non-Coherent Matched Filters 

and the Decoding Subsystem form the feed-forward path. The mixers are parts of both 

paths and are shown explicitly in the figure. The ‘Relational’ block compares the non-

coherent matched filters’ outputs and decides the value of the received bit. The circuit 

designed closely matches the theoretical diagram found in the Introduction of BFSK 

scheme in Figure 1 in Chapter II, with the addition of a time synchronization circuit and a 

Decode Subsystem. 
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Figure 9 Receiver’s schematic diagram designed in Simulink environment. 

1. Non-Coherent Matched Filter Subsystem 

A non-coherent matched filter is introduced in Section A in Chapter II. The 

implementation of this filter in the BFSK receiver includes an integrator that integrates 

the input signal over the duration of a bit period bT . Thus, correct timing for the specific 

design means the correct identification of the beginning of each bit in order to integrate 

over the correct time frame. This fact generates the need for a timing feedback circuit that 

will make this information available. 

The NC Matched Filter Subsystem in Figure 10 has two filters where each one 

consists of two branches. The two branches correspond to the sine and the cosine at the 

symbol frequency. Each branch consists of a mixer (illustrated in Figure 9 before NC 

Matched Filter Subsystem), an accumulator, and a squaring block. Then, the two 

branches’ outputs are added together to give the final output of each filter. The output 
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values of the two filters are compared in order to decide which frequency was 

transmitted. The frequency that was transmitted corresponds to the filter with the highest 

output value. 

The accumulator included in the NC Matched Filter Subsystem is the followed 

discrete time equivalent of an integrator and it adds 64 consecutive values of the input 

signal before it is reset by the feedback timing circuit. Every accumulator is followed by 

a FIFO memory, which only reads the output of the accumulator just before the 

accumulator’s reset signal is raised. In this way, the memory captures only the last value 

of the respective sum. The rest of the block is straight forward, with a squaring block and 

an adder that adds the signals of the two branches, yielding a single output from the 

subsystem. The downsample implemented in all branches between the FIFO memory and 

the squaring blocks is used in order to downgrade the unneeded computational load. After 

the accumulation of the correct 64 samples of a bit and the subsequent storage of this 

value to a FIFO memory element, the memory yields the same output for 64 consecutive 

time units. Thus, it is not necessary to do the computations for all values. 
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Figure 10 Non-Coherent Matched filter subsystem (one of two). 
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2. Timing Circuit 

Synchronization circuits are categorized as data-aided and non data-aided (or 

blind) and the latter require no training data sequence [25]. As was mentioned previously 

in the transmitter description in Chapter IV, this design uses a data-aided circuit for the 

acquisition of the bit synchronization. The preamble is a known pattern that will help to 

identify not only the start time of each bit, but the commencement of each packet as well. 

In this design, the feedback synchronization circuit is separated into three 

subsystems, the two Correlators and the Decision Circuit. The Correlators (Figure 11) 

work similarly to the NC Matched Filter Subsystem with the main difference being that 

accumulators have been replaced by Finite Impulse Response (FIR) filters. These filters 

constitute sliding window accumulators of the last 64 samples. In order to make a 

decision regarding the beginning and end of a bit, a circuit that updates its output at every 

received sample is needed. The correct timing is going to be extracted by the maxima and 

minima of this output. In contrast, the feed-forward path with the non-coherent matched 

filters need only accumulate the proper values and then yield a different output once 

every 64 samples and not every sample.  

In Figure 11, the FIR is shown to be a custom FIR filter and not an off-the-shelf 

block provided by Xilinx. The reason is going to be analyzed in the troubleshooting 

section, but for the moment, it can be thought as an FIR filter with impulse response 
63
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0  0( ) if n

if nnδ =
≠= . The initialization block, as in the case of the 

block ‘Mcode1’ of the transmitter, is used only to prevent the undefined initial signals 

from propagating and to suppress errors during the simulation. It consists of a comparator 

that has two delayed versions of 1 in its inputs; thus, propagating an initial reset high 

signal once at the beginning of the simulation. 

The difference of the outputs of the two correlators is the input to a logic block 

(‘Mcode’ block in Figure 12) that searches for maxima and minima of the input 

waveform. Given that the correlator yields a maximum when the correct 64 samples of a 

bit have been added, the expectation is that the 1’s correlator will output a much higher 
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value than the 0’s correlator when the whole first bit of the preamble has just been 

received. The opposite is expected at the second bit of the preamble, because it has the 

frequency corresponding to the 0 bit. Thus, the difference waveform is expected to be a 

maximum after receiving a 1 at the exact moment that all 64 samples of that 1 have 

entered the filter. Following the same reasoning, the difference waveform is expected to 

be a minimum after receiving a 0 at the exact moment that all 64 samples of that 0 have 

entered the filter. However, when two consecutive equal bits are received, the result is 

different. The output of the filter will reach an extremum at the moment that all the 64 

samples of the first bit have entered the filter, and then remain at that extremum for the 

following 64 samples, corresponding to the second bit. Therefore, the filter output 

displays a plateau effect, which is less useful for symbol synchronization. After the 

identification of maxima and minima, a state machine tries to verify when the correct 

pattern of the preamble has been received. When this is the case, the timing of the bits is 

well known and this information is supplied to the accumulators of the NC Matched 

Filter Subsystem. This part is included in the Decision Circuit shown in Figure 12. 

The timing is first extracted in absolute time values. That is, a free running 

counter, i.e., ‘Counter 3,’ starts counting from the moment the event starts working up to 

the moment it stops. When an event occurs, the time that is captured is relative to the 

power up time of the circuit. The information needed by the accumulators of the forward 

path is at what instance of a 64 cycle time they should stop accumulating the previous bit 

and start accumulating the new bit. The timing must be translated to time modulo 64 and 

then it is stored for the rest of the duration of the packet. This is done by the Slice and 

Register blocks in Figure 12. The extra delay introduced by the timing circuit during the 

feedback path must also be considered.  This is performed by the ‘AddSub3’ and 

‘Constant 7’ blocks in Figure 12. The exact value of ‘Constant 7’ was determined 

experimentally.  

The last three bits of the preamble are not used by the state machine. The time 

that corresponds to the last two 0s is provided to the timing circuit in order to ensure a  
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timely and accurate synchronization of the main circuit. Additionally, the very last bit of 

the preamble, the final 1, is used by the ‘MCode’ in Decoding Subsystem along with the 

signal ‘preamble end’ in order to identify the beginning of each packet. 
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Figure 11 Correlator’s Subsystem (one of two). 
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Figure 12 Decision Circuit. 
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Upon reception of the fifth bit of the preamble, the state machine ‘state_receiver’ 

stays locked for the rest of the packet and then it starts searching for a new preamble after 

the time assigned for the current packet elapses. The decision circuit also provides an 

output, the ‘preamble end signal’ that helps the Decoding Subsystem to identify and 

block the preamble from the output, thus rebuilding the initial data sequence. 

3. Decoding Subsystem 

The Decoding Subsystem, illustrated in Figure 13, accepts as input the result of 

the comparison of the two non-coherent matched filter outputs, which is a sequence of 0s 

and 1s, and tries to locate the last preamble bit. The acquisition of the beginning of the 

preamble may or may not be correct, because the Decision Circuit had not yet finished 

the extraction of timing information. However, after the fifth bit of the preamble, the 

receiver is synchronized to the incoming signal. Thus, the Decoding Subsystem uses the 

information of the ‘preamble end signal,’ which is set when the acquisition of the fifth bit 

of the preamble is accomplished. The following two 0s, i.e., the sixth and seventh bits of 

the preamble, are sacrificed to assure the timely propagation of the information through 

the whole circuit and the last bit of the preamble is used to signal the commencement of 

the information bits. The Mcode block ‘preamble_ detacher’ is a simple state machine 

that incorporates the logic of the previous fact to allow the storage of input bits, only after 

the identification of the last bit of the preamble. The ‘FIFO 4’ memory is driven by a read 

enable signal. This enable signal is delayed by enough time to accommodate the total 

duration of the preambles that are taken away. This is accomplished by block ‘Delay 4, in 

Figure 13. 
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Figure 13 Decoding Subsystem. 

Although the length of the packet had been taken into account by the Decision 

Circuit, the ‘preamble_detacher’ is counting the bits after the preamble again in order to 

achieve better synchronization. An external clock, i.e., the ‘Counter 1’ block in Figure 

13, is used as a reference of the pulse clock time of the last preamble bit. After 120 clock 

cycles, the write enable (we) goes low, disabling the FIFO and the ‘preamble_detacher’ 

waits for the next ‘preamble end’ signal.  The clock ‘Counter 1’ is an 18 bit register and 

is a free running counter. It should be noted that all signals in this subsystem are 

changing every bit period and not every sample period. Block ‘Down Sample’ in Figure 

13 downsamples the ‘preamble end’ signal. Notice that the ‘channel bits’ signal has 

already been downsampled in the previous subsystem. 

Concluding the description of Decoding Subsystem, the received bits are the input 

for a Time Division Demultiplexer (TDD) which is connected to a Viterbi decoder as 

discussed in Section B in Chapter II. The input sequence to the TDD is the encoded bit 

stream first produced in the convolutional encoder in the transmitter (Figure 7). The TDD 

is responsible for separating this sequence back to two different streams in order to 

supply the proper inputs to the ‘Viterbi Decoder.’ The parameters settings for the encoder 

and decoder are the same. This decoding produces the received message bits, which will 
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ordinarily be identical to the sent message bits. Exceptions to this can be caused by 

decoding errors, which can occur when the received signal is corrupted by excessive 

noise, interference, or fading [26]. 

The low level description of the circuit that was discussed in this chapter is 

validated in the next chapter, along with the results and the weaknesses of the design. 

Furthermore, the lessons learned during the design process are also included as a deposit 

of knowledge for follow on research in this domain.   
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V. DESIGN VALIDATIONS, RESULTS AND 
TROUBLESHOOTING 

The design has been verified in the Simulink environment and a critical part of the 

design has been verified using Matlab code-based simulation. Many problems 

encountered during the design of the receiver and transmitter are also discussed. The 

figures of the full transmitter and receiver design are included in Appendix B, thus most 

of the figures that are mentioned in this chapter refer to this Appendix.  

A. SYST EM GENERATOR 

In order to verify the design, the Simulink blocks ‘From Workspace’ and ‘To 

Workspace’ and ‘Scope’ were used. ‘From Workspace’ was used to supply the 

transmitter with message bits and to pass the transmitter output to the receiver. ‘To 

Workspace’ gives the ability to extract the values at a specific point in the design to the 

Matlab environment in order to drive simulation code with this data or to transfer it to the 

receiver. The ‘Scope’ depicts the data directly on a plot with the simulation time on the 

horizontal axis. 

The input sequence to the transmitter was a random sequence of length 1900 

message bits with the leader bit always 1 and the trail bit always 0. After being encoded, 

the bits were transmitted in packets of 128 encoded bits. The correct position of the 

preamble should first be determined. Figure 14 illustrates the signals of the block ‘Scope’ 

of Figure 26 in Appendix B. The first plot is the encoded bits, the second plot is the 

‘read_enable’ signal that releases the encoded bits to the Modulation Subsystem, and the 

third plot represents the channel bits to be transmitted. Channel bits are defined as the 

encoded bit stream with the preambles. As seen in Figure 14, the preamble of the first 

packet is always positioned five bits ahead, but the rest of the preambles were correctly 

positioned exactly in front of the respective packet.  
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Figure 14 Plots of the encoded bits, the ‘read_enable’ and the channel bits (top to 
bottom). 

As shown by the middle plot of Figure 14, the ‘read_enable’ goes high after the 

transmission of the preamble, allowing the propagation of the encoded bits (along with 

the known delay of the five bits duration). At the end of 128 bits, ‘read_enable’ goes back 

to low, capturing the encoded bits in the ‘FIFO’ memory. As stated before, the Preamble 

Subsystem does not know when there are no more bits for transmission and an enable 

low signal should be manually triggered.  Otherwise, it would continue to transmit the 

preamble at the proper instances for the rest of the simulation time. 

The receiver, on the other hand, is using the preamble for timing purposes and 

then removes it. The sequence without the preamble is the input to a Viterbi decoder that 

will regenerate the recovered message sequence. It is necessary to verify that the decision 

logic is working properly. Matlab code was written to simulate the decision circuit and 

duplicate the results for comparison purposes. In order to avoid any phase mismatch, the 

values after the mixers as shown in Figure 32 in Appendix B were captured in the Matlab 

Workspace by blocks: ‘To Workspace 0-4’ in order to supply the test code. This way, any 

noise inserted by DDS blocks will not influence the results. After the confirmation that 

both the Matlab code and the simulation under Sysgen were providing the same results, 

the Matlab code was modified to include the DDS blocks as well with the following 

results. 

 

preamble Encoded message bits preamble 
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As seen in Figure 15, the first two plots are from ‘Scope 3’ (Figure 36 in 

Appendix B) and represent the decision waveform and the decisions made for the 

existence of the preamble. The vertical lines represent the detection of the part of the 

preamble, used for timing purposes, i.e., 10101. The last two plots in the white 

background are the respective results of the Matlab verification code. In practice, both 

results coincide with the correct position of the preamble. Recall that only the timing 

circuit uses the first preamble bits and the Decoding Subsystem uses the rest. 

  

 

Figure 15 Results captured from the ‘Scope 3’ (Figure 36) in Simulink and results as 
plotted by the equivalent Matlab Code (from top to bottom). 

Finally, the initially transmitted and the received bit streams must be compared. In 

order to verify the proper operation of the receiver, multiple runs were made using the 

same stream but different delay value (‘Delay 2’ in Figure 9) at the entrance of the 

receiver. This is done to ensure that the receiver is time invariant and that the specific 

choices made for the synchronization of the different subsystems are not case/input delay 

sensitive. After that process, different streams were used with random delays. The 

number of errors was calculated by a short Matlab code to confirm the visual verification. 



 36

The specific pattern used for the generation of the bit stream is a random sequence 

of nineteen hundred bits always starting with 1 and ending with 0. Specifically, the value 

inserted in the data slot of the parameter window ‘From Workspace’ (Figure 5) was 

[0:1901;1 a 0]' where ‘a’ was defined by the command a =rand(1,1900)<.5 in the 

Command Window. This command creates an array of 1900 random bits. The choice of 

that length was dictated by the constraints of the current configuration of the receiver. 

The counters used in different subsystems of the receiver are 18 bits wide. Since there are 

64 samples per bit, there are  

 
182   4096  64

clock cycles bitsclock cycles
bit

=  (5.1) 

theoretically possible. Due to delays, the effective limit is slightly under 4096 bits. Given 

that the encoding doubles the number of channel bits and accounting for the delays and 

the preamble, roughly nineteen hundred information bits can be received. This problem is 

further presented in Section C.2 of this chapter. Every data packet should fit 60 

information bits, and there will be four extra bits in the last packet due to the 

convolutional encoder. The convolutional encoder does not encode the information bits 

of each channel packet separately, but the whole bit stream continuously. 

The results are illustrated in Table 1 and Table 2. Recall that the input delay to the 

Receiver is ‘Delay2’ shown in Figure 9. The Matlab code shown in Figure 16 was used to 

align the output of the Transmitter and the Receiver and calculate the number of errors. 

%% post encoding 
num_test_bits =3820; % Defines the length of the encoded bits in the  
                     % test sequence. 
delay=403;  % the output value is delayed by 'Delay4' in Decode  
            % Subsystem. 
tra =after_Viterbi_encoder.signals.values(1:num_test_bits); 
rec2 =pre_Viterbi_decoder.signals.values(delay:num_test_bits-1+delay);
num_of_errors_pre =sum(abs(tra-rec2)==1) 
% position =find(abs(tra-rec2)==1)+delay-1  

Figure 16 Matlab code to align output of Transmitter and Receiver and calculate 
number of errors. 
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It must be noted that the number of errors is calculated based on the encoded bit 

stream. There are two obvious methods that could be used to check for errors. We could 

count message bit errors or channel bit errors. In this work, it was chosen to count 

channel bit errors. This has the advantage of counting any error, since the received bits 

are examined before the decoder corrects any errors. However, the disadvantage of this 

method is that it does not check for errors in the decoder. Since the decoder is provided 

by Xilinx, we have confidence in its design and accept this disadvantage as small. 

Before the simulation the following parameters should be defined in the Matlab 

Command Window: T = 7128 10−⋅ , t = 710− . New random sequences are generated by re-

executing the command a =rand (1,1900)<.5 in the Command Window. 

 

Run Number of errors Comments 

1 0 First execution of command a =rand(1,1900)<.5 

2 0 Second execution of command a =rand(1,1900)<.5 

3 0 Third execution of command a =rand(1,1900)<.5 

4 0 Fourth execution of command a =rand(1,1900)<.5 

Table 1.   Results of multiple runs with different input sequence and constant input 
delay (value set to zero). 
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Run Input Delay Value Number of errors

1 0 0 

2 9 0 

3 15 0 

4 23 0 

5 31 0 

6 45 0 

7 57 0 

8 63 0 

9 75 0 

10 98 0 

Table 2.   Results of multiple runs with constant input sequence and variable input 
delay. All runs made after first execution of command a =rand (1,1900)<.5. 

The simulation of both the transmitter and the receiver showed that the design is 

working correctly. The acquisition of the preambles was made at the correct times and 

the timing was correctly extracted. In the absence of noise no malfunction had been 

observed. Minor annoyances are presented in the next section, which explains the various 

problems that appeared during the design process. 

B. TROUBLESHOOTING AND LESSONS LEARNED 

Much knowledge was acquired during the design process. Even though Xilinx is 

trying to offer programs that are easy to use, there were many instances in which the 

debugging process was time consuming. Many of these points are illustrated as follows 

for easy reference and as a guide of things to avoid. 
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1. Transmitter 

The preamble of the first packet does not fit right before the information bits. 

There are always five zeros between the end of the preamble and the beginning of the 

encoded message bits in this packet. In subsequent packets, the preamble is positioned 

correctly. This event should occur every time after a reset. The fact that these inserted 

bits are zero does not affect the decoding procedure and the action taken was to position a 

1 in front of every bit stream. This 1 acts like a flag that information bits follow and made 

the debugging process easier as well. The initial assumption that a proper combination of 

the delay values in blocks ‘Delay 1,’ ‘Delay 2’ and ‘Delay 4’ in Figure 29 would correct 

the problem was later rejected. The reason may be the delay of the input data to reach the 

FIFO memory of Figure 30.  

The Preamble Subsystem is not intelligent enough to sense when data is ready to 

be transmitted. It is in need of external manual control to enable the counter in the 

preamble. While the counter of the preamble is not enabled, the input data is 

convolutionally encoded and stored in the memory. In the same sense, the preamble 

circuit does not know when there is no more data to be transmitted. To void the 

transmission of packets that contain only the preamble, the information bits must be 

provided constantly to the receiver. The bits that cannot be transmitted at any given time 

are stored to an internal memory. Otherwise, the circuit can be manually controlled 

through the external enable and reset port. The output signal ‘empty’ from the FIFO 

memory of Figure 30 memory could be a good indication of when the input data is ready 

for transmission. This could help the problem with the preamble stated in the previous 

paragraph as well. Nevertheless, this signal does not seem to behave as expected. It goes 

high too early as shown in Figure 17 and does not go low after the transmission of the last 

bit stored in the FIFO memory as illustrated in Figure 18. The reason was not determined 

in this research. 
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.  

Figure 17 Plot of the ‘empty’ output signal and the ‘din’ input signal of the FIFO 
memory in the beginning of the simulation. 

 

Figure 18 Plot of the ‘empty’ output signal and the ‘din’ input signal of the FIFO 
memory at the end of the simulation. 

The state machine ‘MCode 1’ in Figure 32 could have been avoided and replaced 

by a constant with an output value of Boolean 1 connected to the enable port of ‘Mux’ 

through a delay. This delay should be measured to overcome the undefined signal errors. 

This tactic is used in Figure 33 for delaying the enable of the ‘Relational’ block. 

2. Receiver 

At the beginning, a point of concern was that the signal used to extract the timing, 

i.e., the output of the Correlators and specifically the signal at din of block ‘MCode’ in 

Figure 37, does not always provide clear and distinguishable peaks. The decision of 

where exactly the peaks occurred can become very vague and this would yield many 

errors. As an example, in Figure 19 a successful acquisition of the preamble is illustrated. 

The first, third and fourth detection of the preamble bits seem to be correctly positioned, 

which is not the case for the second and fifth. There is a flat area near the theoretical 

peaks, which in turn, inserts an error to the timing. From inspection of many preambles, 

the third and fourth bits of the preamble yielded the least error and these were initially 

used for decision, even though all bits were used for the state machine.  
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Figure 19 Example of a preamble acquisition with initial values for ‘DDS clock rate.’ 
Top plot shows the decision signal and bottom plot shows the successive 
peak identification made by the timing circuit. 

When the verification Matlab code was changed in order not to use the output of 

the mixers of the System Generator design, it had been observed that the output of the 

DDS blocks used for mixing purposes in the Receiver, which are blocks ‘DDS Compiler 

v2 for 1s’ and ‘’DDS Compiler v2 for 0s in Figure 33, did not yield the proper output 

signal. The change of the parameter ‘DDS clock rate’ that seems irrelevant was changed 

for both the transmitter and the receiver in order to correct the output. The initial value of 

500.0 (MHz) was changed to 100.0 (MHz). In this way the output waveforms of the DDS 

blocks closely matched those predicted by Matlab simulation. The improvement to the 

signal used to extract the timing was dramatic and many synchronization problems had 

been solved as indicated in Figure 20. The Xilinx technical support replied that the ‘DDS 

clock rate’ should match the ‘FPGA clock period’ defined in the Sysgen token. Thus, 

because ‘FPGA clock period’ is 10ns, ‘DDS clock rate’ should be 1 100
10

MHz
ns

= . This 

answer is not very convincing given that there is no reason to be able to define a 

parameter that you must calculate uniquely from another parameter already defined. 

Given that the ‘DDS clock rate’ defines also the upper limit of the output frequency as 

explained in Section A.3 in Chapter IV, things are becoming more complicated. Further 

research of the source of the problem must be made. 
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Figure 20 Example of a preamble acquisition with final values for ‘DDS clock rate.’ 
Top plot shows the decision signal and bottom plot shows the successive 
peak identification made by the timing circuit. 

The synchronization circuit of the receiver had not been designed to be insensitive 

to noise; except for some very limited capabilities that the ‘MCode0’ block in Figure 37 

can yield. ‘MCode0’ was inserted to the design to implement the idea of a threshold that 

a signal should exceed in order to be translated in/mapped to 0 or 1. The main problem 

without that threshold was that even a small amount of noise to the channel would make 

the decision circuit believe that there are transmitted bits and eventually it would match 

the preamble to the random noise. Averaging the timing extracted over more than one 

bits of the preamble would also give better immunity to noise. Then, the convolutional 

encoder could correct the few mistakes made. 

Another drawback of the program included in the ‘MCode’ block of Figure 37, 

which is the main decision logic, is that there is no escape from going sequentially 

through all the states. Once entered, it only searches to accomplish the criteria to enter the 

next state up the last one. A maximum stay time at each state should have been given 

after which, the state machine would start over. This is also a way to compensate for 

noisy reception. 

The counters of the receiver, i.e., ‘Counter 3’ in Figure 37 and ‘Counter 1’ in 

Figure 38, are free running counters, which means that they never reset to restart 

counting; they are only limited by the assigned output precision. The MCode block uses 

these counters to record the time of some incidents. In case that the counter is reset at an 

improper time, the relative timing of the incidents is destroyed. For example, ‘MCode’ in 

Figure 38, counts 120 bit periods after the reception of the full preamble in order to 
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search for a new preamble. If the counter resets during this counting, then the block will 

stay in the waiting state for an unknown time. On the other hand, the counters will 

eventually reset after exceeding the maximum assigned width of their output. For this 

reason, a reset to this counter is needed but must be built in such a way that will not affect 

the timing of the following MCode blocks. An attempt to solve that problem in ‘Counter 

3’ of Figure 37 using the signal ‘reset_counter’ was only partially successful and was 

disconnected. 

The real function of these counters should be further analyzed. A state machine 

that follows the flow diagram uses ‘Counter 3’ (Figure 37) and ‘Counter 1’ (Figure 38). 

The counters serve to ensure that the exact time after the reception of the preamble had 

past and a new search for preamble should be made. In detail, the ‘MCode’ of Decision 

Circuit (Figure 37) detects up to the fifth bit of the preamble and then waits for 7872 

samples123bits 64
bit

⎛ ⎞
⎜ ⎟
⎝ ⎠

i  clock counts until the next detection. On the other hand, ‘MCode’ 

of Decoding Subsystem that detects up to the eight bit of the preamble, must count 120 

clock counts (the counter now works in bit period because the signal had already been 

downsampled by 64) until the next detection. 

The FIR filters in the NC Matched Filter subsystem as illustrated in Figure 34, 

were initially implemented by the respective FIR Xilinx blocks. The problem that 

appeared was that Sysgen was always mapping these blocks to DSP48 cells (see the 

section on DSP-Enhanced FPGAs in Appendix A). The number of DSP48 cells needed 

for the four 64-coefficient filters is 128 cells, where only 48 are present in the chip. In 

order to avoid this problem and given that all the coefficient were unity for that case, a 

custom design was made as shown in Figure 21. In this way, not only the demand for 

DSP48 cells were minimized but the demand for general blocks was lower as well. The 

64 delay block is a pipe of 64 flip flops in a row. The ‘new value’ is the value that enters 

the pipe and the ‘old value’ is the one that exits the pipe. The combination of ‘AddSub’ 

and ‘Accumulator 1’ blocks is responsible for accumulating every new value to the 

current sum while subtracting the value that is 64 periods old. In such a way, the 

accumulator always contains the 64 most recent values. The accumulation of garbage 
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over time in the ‘Accumulator 1’ is possible. This hypothesis has not been confirmed 

during the simulations, but is still a concern for the real circuit on the FPGA. A reset of 

the accumulator when the message part of the packet is under reception would ensure that 

no garbage is left in the accumulator. 
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Figure 21 FIR custom block. 

The ‘Viterbi Decoder v 6_0’ in the Decoding Subsystem included in Figure 38 

appears in green, which means that an extra license must be granted by Xilinx. In this 

case, a 90 days free license, which is offered to anyone through the Xilinx website, was 

acquired in order to verify the functionality of the design. In any case, the verification of 

the circuit was made before the Viterbi Decoder block because the exact number of errors 

should be revealed and not be covered by corrections made by the decoder. 

The verification of the design was illustrated in this chapter. Many of the 

problems encountered were also exposed and useful lessons learned were also described. 

This part concludes the discussion about the design. The next chapter summarizes the 

work that has been done in this thesis and proposes possible expansions and follow on 

work that can be made. 
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VI. CONCLUSIONS 

 A. SUMMARY OF THE WORK 

The concepts of Software Defined Radio (SDR) and Binary Frequency Shift 

Keying (BFSK) modulation were introduced and the application of Field Programmable 

Gate Arrays (FPGAs) to SDR was further examined. The capabilities offered by the 

FPGAs to easily transform a design to circuit were used to build a BFSK transceiver.  

Xilinx System Generator was used to design a data aided BFSK transmitter and 

receiver. Extensive simulation assures their proper function. Matlab code was used to 

verify the results taken by the simulation. The designs were finally placed and routed to a 

Virtex-4 FPGA to ensure that no errors occurred during that process. 

Appendix A includes an introduction to FPGAs, their internal structure and their 

utilization in the SDR concept. Extensive descriptions of all the blocks used and the 

parameters assigned to each block are given in Appendix B. This facilitates the 

reproduction of the design and gives a better understanding of how System Generator is 

working. In Appendix C, the Matlab code used to simulate the decision signal is given. 

The reproduction of the whole circuit is not as important as the reproduction of the 

decision signal, because this is the most crucial parameter in the whole design. 

B. SIGNIFICANT RESULTS 

The concept of Software Defined Radio proved to be fully realizable and both the 

designs of the transmitter and receiver do not exceed in total the capacity of a moderate 

FPGA, after being placed and routed. The device utilization summary for the transmitter 

and receiver is shown in Table 3. The amount of work needed to design a fully functional 

transceiver was mostly consumed in the learning of the System Generator blocks and ISE 

suite, which is an overhead not needed for follow-on designs. 
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                 Design Type 

Number  of 
Transmitter Receiver Total 

DSP48s (total: 48) 0 (0%) 4 (8%) 4 (8%) 

Block RAMs (total: 72) 4 (5%) 10 (14%) 14 (19%) 

Slices (total:10752) 177 (2%) 3616 (34%) 3793 (35%) 

Table 3.   Device utilization summary. 

The simulation proved that the receiver works as expected and when noise is not 

present, no errors were generated by the receiver. The preamble was correctly positioned 

in front of each packet, with the exception of the first one as discussed in Section C.1, 

Chapter V. The preamble helps the receiver to identify the beginning of every packet and 

extract timing information. The receiver then removes the preamble and decodes the 

received sequence. Any few errors made by noise are corrected by the Viterbi decoder. 

No timing errors were identified during the place and route process made by the ISE 

software. 

C. SUGGESTIONS FOR FUTURE WORK 

1. Limitation of the Design 

The timing circuit is not built to be very tolerant to noise. The main reason for the 

susceptibility to noise is that the state machine (MCode in Figure 37) incorporated in the 

receiver, does not include an abort condition in case there is a misinterpretation of the 

decision signal. Specifically, if the noise exceeds the threshold chosen at the specific 

period that the circuit tries to identify the existence of the first bit of the preamble, the 

state machine is obliged to enter the next stage and does not abort until it goes through all 

the states sequentially. Then it must wait a packet period until it search again for a new 

preamble sequence. 

The frequencies used are not orthogonal according to the definition given in 

Section A in Chapter II. This was due to the initial implications described in Section B.2 

in Chapter V. In order for the two frequencies to become orthogonal, they must differ by 
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integral multiples of the channel bit rate 8
. .

1 10
64c bR = Mbps. In this case, the frequency 

separation should be multiples of 1.5625 MHz. For example, if 1 40f MHz= , the other 

frequency could be 2 43.125f MHz= . 

The limitation of the free running counters must be also addressed. As explained 

in Section B.2 of Chapter V, the current configuration only guarantees the reception of 

less than two thousand message bits, before the counters are reset and a critical error may 

occur.  The extension of the free-running counters from 18 bits to a higher number would 

only give some more space, without eventually solving the problem. A reset signal 

should be inserted at a proper time that will not affect the rest of the design. 

Pulse shaping is not used in the design, but would likely help to suppress Inter 

Symbol Interference [27, pp. 233-244], provided it was done in a way that preserves 

orthogonality. The realization of filters in System Generator is made easy by the use of 

Xilinx ‘FDATool’ and ‘FIR Compiler’ blocks. ‘FDATool’ interfaces the Simulink Signal 

Processing Toolbox to offer a graphical interface to design digital filters. ‘FIR Compiler’ 

can be also used alone in case the coefficients are precalulated.  

2. Suggestions 

The design presented is a good starting point for a design including extra features, 

such as noise tolerance and pulse shaping. These features are optional but will make this 

implementation more useful in practice. Then the design should be more exhaustively 

verified after transfer to the FPGA to assure proper timing of the components. The 

simulation under System Generation is cycle and bit accurate [12]. In this sense, even if 

no timing errors were created after place and routing and the simulation under System 

Generator verified the proper function of the circuit, further verification of the design 

after implementation is compulsory. Chip Scope Pro is a useful way to test the design 

after download to the target FPGA. In order to do so, pins to ‘Gateway In’ and ‘Gateway 

Out’ blocks must be assigned. These pins must be the ADC input to and the DAC output 

from the board. 
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The DDS clock rate discussed in Section B.2, Chapter V, must be further 

examined and the connection of the parameter to the DDS block must be further 

examined. Even if in this design the output frequency of the block is correct, there is no 

guarantee that it will work as well under different design parameters. Even the extensive 

documentation included in the online support page [14] does not give clear answers about 

the relation between the DDS clock rate, the output frequency of the DDS block, and the 

FPGA clock period in the Sysgen token. 

Except the problem with the DDS block, there are other less significant design 

errors to be solved. The delay after the first preamble, as presented in Section B.1, 

Chapter V, should be further examined. The cause of this delay is currently unknown and 

could not be solved with change of the delays’ values included in the design.  In the same 

section, the inability to detect incoming message bits is also discussed. This may be a 

severe limitation in real-life implementations. 

After proper verification of the design, thorough tests under different levels of 

noise could be done. Bit error rate and Signal to Noise Ratio can be plotted and compared 

to the theoretical performance of a non-coherent BFSK receiver. In this way this design 

will be fully documented. 

This design can be used as a foundation for designs using more complex 

modulation schemes. The extension to M -Frequency Shift Keying ( M FSK) is likely 

straightforward and modification to Binary Phase Shift Keying (BPSK) should be easy, 

although it would require carrier frequency and phase synchronization [27, pp. 270, 295]. 

In this manner, a database of modulation schemes can be created leading closer to the 

ultimate goal of a multimode SDR transceiver. 

The electronic files that contain this design are on file with the manager of the 

Cryptologic Research Laboratory [28]. Helpful support documentation from Xilinx is 

discussed in Section C, Chapter III. 
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APPENDIX A.  BACKGROUND ON FPGA AND TECHNOLOGIC 
BACKGROUND 

This Appendix introduces the internal structure of Field Programmable Gate 

Arrays, their function and how they are implemented in the Software Defined Radio 

concept. An evaluation of different technological options in implementing 

communication modulating techniques and Software Defined Radio follows. A 

comparison between these options is also included. 

A.  BRIEF DESCRIPTION OF AN FPGA 

Xilinx Inc. invented the FPGA in 1984 [29].  As electronic circuits were 

becoming more advanced, the glue logic [30] was getting more complex and 

improvements to the Complex Programmable Logic Devices (CPLD) were needed to 

handle more demanding applications. FPGAs came as a logical advancement to help 

interconnect large integrated circuits providing more printed logic and incorporating 

more gates. 

Initial manufacturing technologies of FPGA included antifuse, Static Random 

Address Memory (SRAM), Electrically Erasable Programmable Read-Only Memory 

(EEPROM) and some minor types [31]. Their difference is that SRAM requires external 

boot devices but it is reprogrammable, antifuse is one time programmable and EEPROM 

is reprogrammable and does not need an external boot device. Nowadays, the main type 

used is SRAM, except when reprogramability is not a mandatory feature, in which case, 

antifuse is a cheaper solution. 
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Figure 22 Simplified Version of FPGA Internal Architecture (From: [32]). 
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Figure 23 Typical FPGA architecture (From: [33]). 
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A Field Programmable Gate Array is a two dimensional array of logic blocks and 

flip-flops with electrically programmable interconnections between them [32]. These 

interconnections can be identified in Figures 22 and 23 [33] and are distinguished in local 

(or short) and long routing lines. Logic Tiles, also called Logic Slices according to other 

manufacturers, are the smallest blocks of logic. Due to its versatile structure, a different 

primitive operation (addition, multiplication, etc.) can be assigned to each Logic Tile. In 

order to build more complex functions, many Logic Tiles are attached to an adaptive 

network. Electrically programmable switches (as shown in Figure 23 under the subtitle 

Routing Switch) are responsible for customizing the network.  

From the aforementioned description, it is possible to identify the two 

configurable aspects of FPGAs:  

• The function assigned to each logic block. This function is going to define 
which elements inside the logic block will be activated in order to yield 
this specific function. The logic block itself must have a structure that may 
support a wide variety of different logical functions. One such structure of 
great importance is that of a Lookup table. 

• The interconnections between the logic blocks. The combination of many 
primitive functions assigned to different blocks can give a very complex 
functionality as a result. Due to the way that this function is implemented, 
it may even be executed faster than when a microprocessor is used instead. 
Nevertheless, it should be kept in mind that this flexible routing adds 
much overhead to the chip itself. It consists of a wiring grid controlled by 
electrically programmable switches and the interconnection overhead can 
even be close to two thirds in terms of power consumption and silicon in 
deep submicron processes [34]. The higher the flexibility of routing in an 
FPGA, the higher the utilization of the logic and the lower the density of 
logic block. The manufacturers of FPGAs should always consider this is a 
tradeoff for their products. 

In Application Specific Integrated Circuits (ASICs), no need exists for logic tiles, 

nor for long routing lines, because the operation of its logical components is prespecified 

and sequential logical blocks are placed during manufacturing process closer to each 

other. This makes the design much more concentrated and more efficient but it lacks the 

main characteristic of FPGAs, versatility and upgradability [76].  

A detailed description on FPGAs is given in [35], which can be used for further 

reference. 
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B.  ADVANTAGES AND APPLICATIONS OF FPGAS 

Until fairly recently, FPGAs did not have enough gate capacity or computational 

power to implement digital signal processing (DSP) tasks. They have also been perceived 

as being expensive and power hungry. The versatility and the extra capabilities that they 

acquired after the change of the century did change many of their applications. One of 

their newest features is the introduction of new hard embedded multipliers, which yield 

extra DSP capabilities. A detail description of the embedded multipliers is given later in 

this chapter. 

The synthesis and development tools have also evolved and include many 

different design environments. Except for the Hardware Description Languages, every 

FPGAs manufacturer offers a proprietary designing suite consisting of block diagram 

designing tools or schematic processors. These tools are time and signal accurate and 

their ease of use minimizes the learning curve and the debugging process, which in turn 

leads to short time to market. Intellectual Property (IP) cores are also available, which are 

designs implementing complex functions that can be incorporated into other designs for a 

fee. Usually, these are also available from third party vendors and their acquisition 

accelerates the time to market and reduces the need for proficiency in designing FPGAs 

[36].  

An example of great interest is mobile communications. The newer CDMA2000 

EVDO and W-CDMA standards demand computationally intensive digital signal 

processing, which requires much power. The ASIC solution is always better suited in 

such an environment, but the lack of upgradability makes it undesirable. The standards do 

not last for more than four to five years, making the replacement of the hardware at a 

base station uneconomical. The FPGA is the solution that closely matches the 

effectiveness of ASICs retaining at the same time the ability to upgrade [37].  

Another important feature of FPGAs is their ability to conform to today’s general 

trend towards system-on-chip (SoC), thus making the integration of many different 

circuits in one single chip a reality. This saves both money and space, offering high  
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bandwidth between devices. FPGAs are used for many diverse applications including 

ASIC prototyping, digital signal processing, medical equipment military systems, 

Artificial Intelligence (AI) and cryptography [38].  

The characteristics explained in detail above yield designs implemented in FPGAs 

with short time to market and reduced cost of development. Also, the maintenance and 

upgrade cost can be minimized, if this is applicable to the specific application.  

C.   FPGA VS. GPP 

Until recently, the fabrication, or engraving, process for General Purpose 

Processors (GPPs) were one generation ahead of the engraving process for FPGAs. 

Nowadays, this is no longer true. The current generation of Intel’s Penryn® processors 

uses 45nm lithography for engraving and both the MIPS32 74K and ARM Cortex®-A9 

utilize a TSMC 65nm generic process [39]. Today, the manufacturing process of FPGAs 

has closely matched that of GPP with Xilinx’s latest FPGA series Virtex®-5 [40] and 

Altera's Stratix® III [41] using a 65nm engraving process. Altera also recently released 

the 40nm Altera's Stratix® IV series [42].  

The benefit of switching to a smaller manufacturing technique is to shrink the die, 

even though there may still be more circuits packed. Therefore, the question is how 

efficiently the extra gates can be used. In the past, this extra silicon was used first for 

deeper pipelines with more complex prediction circuits, then for more on-chip cache 

memory, and finally to add more cores. A multicore processor is a single chip containing 

multiple processing engines that may share common resources, such as cache memory. 

Each of these techniques ended at a point of diminishing returns. The only hope is that 

the addition of more cores could yield the extra computational power needed, but 

efficient multicore programming is a challenge. The traditional programming techniques 

could not be used to take advantage of the multicore GPPs and more time will be needed 

in order to have mature parallel programming. 

FPGAs can use the extra silicon in a more application-specific way. It is easier to 

build a circuit that uses parallelism than to write a similar program in software. Thus, 

while technology advances and offers higher density chips, it is always possible to make 
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use of this increased amount of logic in FPGAs. This is not the case in GPPs [43]. The 

first implementations of SDR were using mostly GPP [44], but the evolution of DSP 

made them less practical. Nowadays, the GPP is extensively used for another purpose; it 

is responsible for the network protocols and any application used. The new generation of 

FPGAs is also offering IP cores of soft processors, eliminating in many cases, the need of 

an extra GPP. Following this philosophy, ACTEL offers the Cortex-M1 [45] and ARM 7 

and Xilinx offers the PowerPC 440 [46] soft processors.   

Although ARM processors seem to dominate the GPP market for portable 

devises, the STI’s (Sony, Toshiba, IBM) Cell processor and other completely new 

products launched this year also exist but they have not been given time to prove their 

capabilities. Some of these products include Intel’s AtomTM [47] and Via’s NanoTM 

processors [48].  

D.  FPGA VS. DSP 

DSP chips provide good performance and usually offer an easier development 

process, which also means quicker time to market. Some modern DSP chips are very 

capable and they sometimes feature on-chip Viterbi and matrix multiplier coprocessors 

and a plethora of connectivity and memory options [56]. The first in line is Texas 

Instrument® TMS320C6455, which has a 1.2 GHz clock and is engraved with 90nm 

process technology and executes up to 9600 million instructions per second (MIPS) [49]. 

Another high end chip is Freescale’s MSC8144 multicore DSP [50], which can be 

accompanied by the MSBA8100, an accelerator for Fourier transforms and channel 

decoding, which is especially made to accelerate 3G-LTE, WiMAX and 3GPP-R6. Each 

of the four cores of MSC8144 runs at 1 Ghz and was the best performer among DSP 

chips on some tests made by Berkeley Design Technology [51].  

High power consumption is another drawback of DSP devices. Mobility is of 

much concern nowadays including portable wireless devices, and in the future, this 

demand will likely increase. Many Bluetooth and WiFi products exist and the demand for 

mobile communication will grow, requiring even more efficient DSP techniques. Much 

research has shown that DSP chips consume much more energy than ASICs or even 
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FPGAs. In “BDTi Focus Report: FPGAs for DSP, Second Edition,” [52] there is an 

extensive analysis and comparison of the consumption of different kinds of chips, leading 

to the conclusion that the parallelism inherent in FPGAs can save much energy compared 

to the same number of DSP cores. As stated in “FPGAs vs. DSPs: A look at the 

unanswered questions” which is an abstract of the BDTi report, it is mentioned that in 

DSPs only a small fraction of the silicon real estate is devoted to the actual calculations 

while most is assigned to the transportation of data to the correct place. Therefore, they 

conclude that “it would be a mistake to assume that FPGAs are inherently less energy 

efficient than DSPs”. Then, an example exemplifies that even though the raw power 

consumption of a FPGA is much higher than a comparable DSP, the FPGA can handle 

many more channels per chip, leading to only a fraction of the power consumption per 

channel of the DSP.  

DSP performance cannot easily compete with either ASICs or FPGAs and the 

main reason is that DSP chips are serial processors, even if many of the DSP applications 

can widely benefit from the inherent parallel structure of both ASICs and FPGAs.  

According to Douang Phanthavong [53], FPGAs that have been optimized to 

perform a digital-signal processing task, will run anywhere from 10 to more than 1000 

times faster than a stand-alone DSP device. This is the main reason that modern DSPs 

include special coprocessors. Especially for communication applications, Viterbi and 

Turbo code coprocessors have been developed, suppressing the need of using multiple 

DSPs [37]. However, not all needs can be satisfied by special coprocessors and the 

unlimited customization that FPGAs offer can match the needs in a more favorable way 

[53]. 

An example from “Embedding FPGAs in DSP-driven Software Defined Radio 

applications” by Rodger Hosking and Richard Kuenzler examines the case of a wideband 

Finite Impulse Response (FIR) digital filter. Assuming that this filter requires 32 

Multiply ACcumulate (MAC) operations in every clock cycle, it is easy to incorporate 32 

MACs in an FPGA design, which are hardwired, yielding greater speed. In contrast, 

DSPs usually incorporate only two multipliers and will be considerably slower. Notice 

that a hardware MAC can be clocked up to 500 MHz [54].  
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E. FPGA VS. ASIC 

ASICs are hardwired [32], custom chips designed for a specific application 

instead of working as a GPP. They are hard to compete with any other type because they 

encompass all the most wanted characteristics. At the same time, ASICs can achieve 

energy efficiency, low cost and high performance. They have only one drawback. They 

ask for all the design effort and most of the expenditure to be made upfront and no 

changes can be made without paying again all this costs. 

ASICs emerged in the place of DSPs offering better performance, power and cost 

compared to the latter, because they could use the silicon estate more efficiently. In 

ASICs, only the compulsory interconnections and the exact number of logic cells exist. 

Thus, in high volume the price per unit is definitely cheaper than any other chip [55]. As 

stated, the DSPs do have a fixed cost regardless of the purchased quantity. In addition, 

FPGAs cannot use their silicon as efficiently because of the interconnection overhead. 

However, this aspect only accounts for one side of the coin. In order to produce ASICs, it 

is necessary to first print the corresponding masks. This cost is included in the 

nonrecurring engineering (NRE) costs and make the production of small quantities 

prohibitive [56].  

Having a perfectly matched ASIC to a specific application does not always solve 

all the problems. Even if this approach is guaranteed to achieve the maximum speed 

along with minimum resource consumption, it demands much time for the initial design, 

which increases exponentially with its complexity. Nowadays, with very short products’ 

life, even a delay of some weeks may force a product to lose the market window with 

catastrophic results in the sale sector. 

Upgradability and reprogramability are additional characteristics missing in 

ASICs. Opposed to FPGAs, ASICs must be designed and manufactured to exactly the 

specifications imposed. If not, most of the NRE must be paid again plus any extra 

expenses to retire the defective products from the market. This process is expensive and  
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undesirable. On the other hand, FPGAs can be even shipped with bugs and then be 

corrected by a simple download (if correct measurements are taken for that purpose). For 

DSPs, which work based on software, reprogramability is also viable.  

In conclusion, it is becoming harder and harder to find devices that have the 

luxury of being time to market insensitive and high volume cost effective. In addition, 

even in that case, there is a place in the market for FPGAs to equip the first versions of a 

new product, until the design is proven to be robust. FPGAs do not outperform ASICs 

neither in terms of speed nor in power consumption. Nevertheless, this margin is not as 

significant as that between DSPs and FPGAs.  

An optimized implementation in FPGAs can be almost as good as one in ASICs, 

additionally offering the ability for future upgrades and the flexibility of a System on a 

Chip. This flexibility is acquired at the expense of price per unit. Accounting that FPGAs 

do not demand significant NRE costs, there is a place for them in the market. It is hard to 

approximate the quantity that is the turning point to the curve. As the engraving process 

shrinks, the expenses associated with the manufacturing of fabrication units for ASICs 

goes up. In order to keep the manufacturing cost of ASICs low, they should be engraved 

using larger scale making the comparison between ASICs and FPGAs even vaguer [57].  

F. DSP-ENHANCE D FPGAS 

It has been seen that each category of chips has its own virtues and shortcomings. 

In order to increase capabilities, companies have tried to combine features of different 

classes in one chip. Following this logic, new FPGA models have embedded DSP cells 

and the companies have created synthesizable Intellectual Property (IP) cores to 

accompany their chips [56].  

Regarding DSP embedded capabilities, both Altera's Stratix I family and Xilinx's 

Virtex-II family already offer some architectural enhancements to increase DSP 

efficiency. These DSP capabilities were provided by hard-wired on-chip multipliers 

intended to offer acceleration to operations like multiply-accumulate (MAC) or multiply-

addition (MADD), which is very common in DSP algorithms like the Fast Fourier 

Transform (FFT) and Finite Impulse Response (FIR) filters. The core of a typical DSP 
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block consists of a multiplier followed by an adder and many registers at the inputs and 

outputs of the cell (Figure 24) [58]. DSP cells can also be cascaded, which adds more 

flexibility in applications like FIR filters.  

 

Figure 24 Internal Structure of a DSP48E cell. (From: [58])  

As an example, in their newest chips, Virtex-5 Xilinx is offering the DSP48E 

slice, which is a 25-bit by 18-bit multiplier along with a 48-bit accumulator. This offers 

impressive performance including speed and power while using little silicon real estate. 

The number of DSP slices is limited to a number between 32 and 192, but still, the DSP 

acceleration they offer is noticeable. For even greater convenience, the many library 

blocks can be optionally implemented using these DSP slices, yielding very fast designs. 

Figure 24 shows the block diagram DSP48E [59]. 

Regarding soft cores, Actel delivers synthesizable versions of ARM7 (CoreMP7) 

and ARM Cortex (M1, M3) free of charge. Advanced RISC Machine (ARM) processors 

in their hardwired form are processors mainly developed for mobile devices with a 

Reduced Instruction Set Computing (RISC) core. The mother company that develops the 

new ARM processors only licenses them without manufacturing them on its own. Every 

respective vendor in the electronics sector owns at least one license. ARM’s new line of 

products also includes synthesizable cores, like the older ARM7 and the new Cortex that 
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can just be downloaded to an FPGA. Thus, inside an FPGA it is possible to have a GPP 

plus some silicon left for other designs. The embedded cores can run different real time 

operating systems (RTOS) and support modern connectivity protocols, like Gigabit 

Ethernet and RapidIO [60].  

Xilinx went one step further by producing FPGAs with built-in PowerPC® 440 

blocks. In some models of Virtex-5, Xilinx even includes two PowerPC cores [61]. Altera 

is not only offering its own RISC version (Nios® II) along with ARM Cortex M1, but 

recently updated with the Freescale’s 32bit V1 ColdFire [60]. Freescale is another 

manufacturer that produces microprocessors for embedded devices and its ColdFire chip 

is a 68k series microprocessor.  

Regardless of the previous advancements, some operations still exist that are not 

suitable for FPGAs, like division by a number not a power of 2 and especially between 

floating point numbers [62]. Sometimes, these operations are implemented with look-up 

tables, but there are some shortcomings that are easier to implement in DSP chips. For 

this reason, modern platforms force DSP and FPGAs to coexist in order to achieve 

maximum performance. 

G. THE ROL E OF FPGAS IN SDR – HOW TO COMBINE DSP-FPGA 
COPROCESSOR 

A goal of SDR is the ability for a single transceiver to conform to multiple 

different air interfaces and modulation formats. The design that would accommodate all 

present and future needs of a SDR product must be flexible, scalable and of high 

performance. The use of many DSP processors in parallel configuration is not practical 

because of complexity and power consumption. Furthermore, there should be a margin 

between the performance of the processor and the current needs in order to accommodate 

any future demand. An example granted from the video compression area of mobile 

devices is the comparisons of the standard MPEG-2 with the newest H.264. The 

algorithmic complexity of high definition resolution H.264 is three times that of standard 

definition resolution MPEG-2 video compression, which is translated on an order of  
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magnitude increase in system performance. Thus, there should be enough computational 

power even for future standards. Otherwise, no update can be performed, thus reducing 

versatility [63].  

This reconfigurability does not come without a computational cost and 

complexity cost, because analog parts cannot be used extensively anymore and digital 

circuits do not always have the bandwidth to support wideband communications. As it 

has been demonstrated, one family of chips cannot provide all the characteristics needed 

in order to make SDR a reality. The power of modern FPGAs offers much flexibility and 

can help realize the SDR concept. Nevertheless, in order to combine all features needed a 

cross-chip platform is necessary.  In practice, typical SDR platforms include all three 

DSPs, FPGAs and GPPs to deal with the complexity, cost and power constraints.  

The initial use of FPGAs as mere interconnecting logic between external 

interfaces and computational chips (or chips in the system) or between DSPs and GPPs, 

has now changed. FPGAs are also used as fabric where special circuits are built, in cases 

where speed requires implementation of these DSP functions in hardware. Thus, they are 

used as coprocessors to either DSPs or GPPs, in order to accelerate some functions that 

are frequently used or could benefit from a parallel structure. Tools provided by the 

manufacturers of the FPGAs make the mapping from high-level languages to Hardware 

Description Languages (HDL) easy to use [64].  

The different functions that usually are assigned to these devices are illustrated in 

Figure 25 [65].  
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Figure 25 Different Functions Assigned to GPPs, FPGAs, and DSPs (From: [65]). 

An FPGA used as a coprocessor seems to yield a balanced solution. In such cases, 

the DSP code must be partitioned into the parts that will be executed by the DSP 

processor and by the FPGA.  In “Hybrid FPGA/DSP architecture: the optimal solution” 

by Jeffry Milrod [66], the author mentions that the FPGA should be placed close to the 

signal I/O. This configuration can use the FPGA as a reconfigurable I/O controller in 

support of various standards (like PCI express, GigabitEthernet etc.). Also, it solves the 

bandwidth problem of connections between fast I/O devices and the core.  

The general guidelines that should be followed during the design of such systems 

are described in [67] and include the folly of trying to transfer a code previously written 

for a DSP platform to the new architecture. The serial, sequential logic of a DSP has 

nothing to do with the parallel logic of FPGA designs. Other guidelines refer to the split 

of tasks executed between each of the two chips, suggesting that the control part should 

be better instantiated in the FPGA, because many soft embedded processors are offered 

for FPGAs. The paper also refers to the evaluation of different choices regarding 

intellectual property in the design. While producing an intellectual property is more 

expensive, time to market may force its purchase. 
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Another point of great importance is the bandwidth of the interconnection 

between the DSP and the FPGA. In hybrid architectures, much data is going to go back 

and forth between the main computational elements, depending on where the 

computation is more efficient. Thus, in order to be applicable in practice, the interfaces 

must be of low latency and fast [68].  

Texas Instruments' Small Form Factor Software-Defined Radio is an 

implementation example that uses Xilinx Virtex-4 SX-35 FPGA, TI's TMS320CC64x, a 

600 MHz chip, DSP and an ARM926EJ-S processor. As expected, the DSP undertakes 

the signal processing load, while the GPP supports network and application processing 

and the Virtex-4 is used for modem co-processing and acceleration functions. The 

manufacturer claims the existence of both a DSP and ARM on a single chip has the 

benefit of reduced system space and cost [69]. 

H. BEYOND THESE TECHNOLOGIES, WHAT NEXT? 

Some new technologies advertise a combination of both FPGA and ASIC 

benefits. Usually the chips implementing these technologies offer partial reconfigurability 

keeping other parts hard-wired, placing themselves in between the two extremes. Others 

are highly parallel devices that incorporate an internal structure to implement the difficult 

problem of massive parallelism efficiently. Nevertheless, none of these technologies have 

gained a dominant position in the market [70].  

The eASIC is promoting the so called Second Generation Structured ASICs, 

Nextreme2™ [71].  It is a 45 nm design that belongs to the category of ASIC-FPGA 

Hybrids. The exact way this is implemented is very well illustrated in Figure 26 [72]. The 

specific choice of using routing via single mask eliminates the need for a very large 

overhead of SRAM elements that the flexible routing would need. In this way, the current 

consumption is reduced, keeping in mind the current leaking that SRAM elements 

encounter. The cost per chip is also suppressed while keeping the mask charges very low, 

which in turn removes the minimum quantity constraints that conventional ASICs would 

have. 
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Figure 26 Illustration of the concept behind eASIC’s structured ASICs (From: [72]). 

On the other hand, Nextreme retains the internal structure of cells, called an eCell, 

the same as FPGAs. This allows some of FPGA’s flexibility and reconfigurability. The 

company advertises the cost of the development tools as well as time to market similar to 

that of FPGAs. Nextreme can host a plethora of soft cores, including ARM 926EJ, and 

Tensilica Diamond Standard Processors, which are mainly for audio processing.  

There are two device options, one for prototyping and one for mass production. 

The method used to customize the interconnections in this product is maskless 

lithography and is called the Direct-write e-Beam. This technology uses an electron beam 

to write directly on the wafer. The paper [73] on the company’s website describes this 

technology.  

The PicoChip’s picoArray™ is another architecture that has managed to 

differentiate from the competition. It consists of a massively parallel design where 308 

tiled processors are connected in a 2D grid. These 16-bit Harvard processors each have a 

small local memory and each one runs its own process. For proper interconnection, they 

are all attached to a network of 32-bit buses, the picobuses, and programmable bus 

switches. Multiple picoArray cores can be used in a parallel structure to give even more 

computational power. In each picoArray, multiple functional acceleration units (FAU) 

exist for speeding some specific tasks, like Advanced Encryption Standard (AES) 

encryption. Some models even have an embedded ARM-9 processor. They have proved 
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to have very good processing capabilities in known DSP calculations, like the FFT or 

IFFT, and error control coding and decoding. This chip has been deployed in wireless 

infrastructure [74]. See Figure 27 [75]. 

 

Figure 27 PicoArray Concept (From: [75]).  

I. LIMITATI ONS 

The question that arises naturally is if the ultimate goal of software radio can be 

achieved. This goal is to build devices that can handle every possible modulation by just 

loading the proper software. As described in [76], some parts of the radio are not even 

close to digital implementation due to cost or space. The main limitation arises from 

Digital to Analog Converters that are not fast enough for most Radio Frequencies (RF). 

The solution usually used is to perform analog to digital (Rx) and digital to analog (Tx) 

conversion at a low intermediate frequency (IF). The conversion between the IF and RF 

is usually performed using analog hardware. The advances made in that domain do not 

seem capable of changing that in the near future. 
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APPENDIX B. IN DEPTH PARAMETER ANALYSIS OF BFSK 
TRANSCEIVER DESIGN 

In this Appendix, a description of the specific function of each block and the 

settings of its parameters can be found. The reading of this Appendix in parallel with 

Chapter IV is proposed for someone not familiar with the Xilinx environment in order to 

acquire a better overview of the meaning of each block. It is also useful as a reference 

guide to someone that would like to reproduce the circuit or use it as a platform to 

extended to a different modulation scheme. 

A. TRANSMITTER (TOP LEVEL) 
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Figure 28 Transmitter’s schematic diagram designed in Simulink/Sysgen environment. 

• System Generator:  its existence is compulsory to every design. It defines 
the type of target FPGA the FPGA clock period, and other key parameters. 

Key parameters: 
Part: Virtex-4 xc4vlx25-10sf363.This is the target FPGA. 
FPGA clock period (ns):10. 
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Clock pin location: A8. This choice depends from the actual pin that the 
mainboard provides the clock pulses and it is found in the board’s manual. 
This parameter is crucial for proper function of the design on the FPGA 
and post place and route simulation is not feasible if this parameter is not 
defined. 
Simulink system period (sec): T/128. This number is defined by the faster 
component of the design.  The value T corresponds to the desired 
information bit period and equals 128*10 ns. The simulation of the design 
is made with time steps of T/128 sec, as defined in Simulation Tab -
>Configuration Parameters in the Simulink window.  In explicit, when a 
block is defined to work at a sample period T, it yields an output once 
every 128 Simulink periods. In this case, the ‘System Generator’ block 
only defines the basis for the other blocks. When a block has sampling 
period T, it yields output 128 times slower than the reference period. 

• Resource Estimator: It is a block that provides an estimate regarding the 
FPGA resources that are required to build the circuit. 

• From Workspace: inserts variables from the Matlab Workspace.  

Key Parameters: 
Data: [(0:1901)*T;1 a 0]' where a =rand(1,1900)<.5 is executed in the 
Matlab Command Window. 

• Gateway In, Reset, Enable : converts the input to Xilinx fixed point type. 
The part of the design that is after this block is synthesized by System 
Generator. The block itself becomes a top level input port. 

Key Parameters: 
Output type: Unsigned consisted of 1 bit. The input is 0 or 1. 
Sample period: T. The block is working at the Simulink simulation period 
and 128 times slower than the reference. 

• Sample Time1 : illustrates the simulation period concept discussed in the 
System Generator’ block. It uses a display block to report the normalized 
sample period value. A value of 128 that is shown in ‘Display 1’ means 
that the input is 128 times slower than the reference. For the specific case 
that the ‘System Generator’ block has a value of T/128, it means that the 
previous block of the ‘Sample Time 1’ has a sample period of T. 

• T3: terminates the its input to avoid warning messages. It also means that 
its input is not considered useful in this design. In this case, the ‘TX ready’ 
signal proved not to help the problem of the gap between the preamble and 
the encoded bits as discussed in Section C.1, Chapter V. 

• Mux1:  multiplexer with select (sel) of type unsigned and configurable 
number of data bus inputs (d0,d1). The Enable port (en), which is optional, 
forces the latency to be more than 1. The exact value of latency is also 
shown on the block’s figure as the negative exponent of the z symbol.  
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• Delay1: Multiple delays are spread over the design. Sometimes their role 
is to ensure timely propagation of the signals, other times they take care of 
the synchronization of different branches of the design. This is one case 
that delay should not have been used, because the scopes are not 
synthesized in contrast to the delay blocks. The proper way is to use a 
‘Gateway Out’ block and Simulink’s delays right after. 

• Sample Time, Sample Time2: As discussed in ‘Sample Time1.’ 

• Gateway Out : Opposite functionality than ‘Gateway In.’ It converts the 
Xilinx fixed point input to a Simulink compatible type. These blocks are 
synthesized in top level output ports. 

Key parameters: 
Input/Output Buffers (IOB) pad locations: 
{'U9','V9','V10','V11','P19','U12'}. These are the output pins from Most 
Significant Bit to Least Significant Bit. The number of the pins is equal to 
the number of the output bits.  

• To Workspace : Stores the values presented at its input as a Matlab 
variable for further analysis in the Matlab Environment. In this case, the 
data will be forwarded to the receiver’s input. 

Key parameters: 
Variable name: simout. This is the name of the variable that will store the 
output values of the Transmitter. They can be recovered through the path 
simout.signals.values because simout is a structure that saves other 
information like the time that corresponds to the respective value. 

B. PREAM BLE SUBSYSTEM 
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Figure 29 Preamble Subsystem. 
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• Counter1:  A counter should be thought of as a clock with an adder. Its 
output can be usually used by comparators to enable or disable signals. In 
this case, the counter is also used to directly provide the next address to 
the ‘ROM’ block. 

Key parameters: 
Count to value: 127. This depends on the packet size and corresponds to a 
packet length of 128. 
Number of bits: 7. This number must merely accommodate the maximum 
value of the counter. In this case, seven bits are enough to represent the 
maximum value of 127. 
Explicit Sample Period: T/2. In this case, the preamble has bit period equal 
to the encoded bit period. For the specific encoder of choice, this means 
that the encoded bits should have half the period of the message bits. 
Recall that the ‘Gateway In’ has sample period of T. 

• Convert1:  Translate the input to a desired output type. The need that 
forces its use is that the ‘ROM’ block does not accept addresses that are 
not compatible with its depth.  

Key parameters: 
Output precision: 3. The 7 bit output value of the ‘Counter 1’ must be 
converted to 3 bits input to the ‘ROM.’ 
Overflow: Saturate. Does not have any specific impact to the performance 
of the design, just makes it easier to see the output plots in ‘Scope1.’ The 
‘ROM’ output will be always the last bit of the sequence while the counter 
output will be more than seven. 

• ROM: It is a single port read-only memory (ROM). The preamble is 
stored in this memory, given that it does not change over time.  

Key parameters: 
Depth: 8. 
Initial value vector: [1 0 1 0 1 0 0 1]. This is the preamble sequence. 
Number of bits (Output Precision): 1 

• Relation1: It is a comparator that can support a plethora of different 
comparisons. Here, the output of the ‘Counter1’ is compared with a 
constant number to determine if the preamble or the encoded message bits 
should be transmitted. Whenever the ‘Counter1’ is less or equal to 7, the 
preamble is transmitted, otherwise the encoded sequence is selected. 

Key parameters: 
Comparison: a>b. 

• Delay1, Delay2, Delay4 : delays that had been used for synchronization 
troubleshooting purposes. Their actual value is set to zero and do not 
affect the design as discussed in Section C.1 in Chapter V. 
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C. DATA INPUT SUBSYSTEM 
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Figure 30 Data Input Subsystem. 

• Convolutional Encode r v6_0 : is an encoder that uses a convolutional 
code. The decoder that matches the convolutional encoder is the Viterbi 
decoder. Encoders are provided by Xilinx as free to use IP blocks, 
although it is not the same with the decoders. In digital communications, 
encoding is used for forward error correction. In this design, the encoding 
is applied to the whole message sequence, and not in a per packet basis. A 

generic diagram of a rate 1
2

r =  code is provided in Figure 31 to grant 

some further insight and a more detailed description is provided in Section 
B, Chapter II. 

 

Figure 31 A block diagram of a convolutional encoder.  (From: [13]). 
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Key parameters: 
Constraint length: 3. This means that the shift register of the encoder has 
two flip-flops. 
Convolutional code array (octal): [7 5]. This code is the one proposed by 
Xilinx for this specific constraint length. This code means that the first 
output branch of the convolutional encoder (data_out_v(0) in Figure 31) is 
adding modulo 2 the values stored in all flip-flops and the input value 
(111b), and the second branch(data_out_v(1) in Figure 31) is using only 
the values of the last flip-flop to the right and the input value (101b). 

• Concat:  this block concatenates the two inputs into one word. The 
ultimate goal using this block is to multiplex the two output streams of 
convolutional encoder into one stream. 

• Parallel to Serial : This block complete the time division multiplexing 
started by ‘Concat’ block.  Every word at the input is broken into separate 
bits and is sent serially to the output. 

Key parameters: 
Output order: Most significant word first 
Type (Output Precision): Unsigned 
Number of bits: 1 
Note: Both the ‘Concat’ and ‘Parallel to Serial’ blocks could have been 
replaced by a ‘Time Division Multiplexer’ block where no extra 
parameters are needed, except the number of inputs.  

• Gateway Out1 :  It converts the Xilinx fixed point input to a Simulink 
compatible type. It drives the ‘Scope1’ and ‘To Workspace1’ blocks. 

Key parameters: 
Translate into output port: Disable. This block is not an instance of an 
output port. An output pin is not assigned to this port during synthesis. 

• To Worksp ace1:  Stores the values presented at its input as a Matlab 
variable for further analysis in the Matlab Environment. In this case, the 
data represents the message sequence and will be used to compare the 
receiver’s output and count the number of errors. 

Key parameters: 
Variable name: pre_Viterbi_encoder. 

• Delay7, Delay1 : Delay used to align the plots in the ‘Scope1.’ As is the 
case with many delays that drive Scopes, this is not a proper way to 
implement a delay (see: ‘Delay1’ in Figure 28 description in Appendix B). 

• FIFO: It is a First In First Out memory queue. The input values engage 
next available memory location in the memory queue. This function is 
permitted whenever write enable (we) signal is high, otherwise the input 
data are discarded. In this case, ‘we’ is always high (‘Constant1’) allowing 
the encoded message bits to be saved in the memory, even while the 
preamble sequence is transmitted. Read enable (re) signal is defined by the 
Preamble Subsystem and it is high for the time that the preamble is not 
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transmitted. This allows the encoded bits to appear to the input of the 
Modulation Subsystem. Outputs ‘%full’ and ‘full’ are not used and are 
terminated by ‘T1,’’T’ blocks. ‘Empty’ signal had not been possible to be 
used (see also Troubleshooting of the Transmitter in Chapter V) and is 
terminated just outside the Data Input Subsystem. 

• Constant1: Constant of value 1 that keeps the ‘we’ signal of ‘FIFO’ 
always high. 

• Inverter: bitwise negation the Boolean value of its input. 

D. MODULATION SUBSYSTEM 
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Figure 32 Modulation Subsystem. 

• Mux: same description as ‘Mux1’ in Figure 28 in Appendix B. Same 
parameters. 

• Delay1, Delay2, Delay3: Delays that ensure the timely propagation of the 
signals. It is often necessary to insert delays between adjacent blocks. 

• DDS Compiler v2_0 and DDS Compiler v2_0 1 : Direct Digital 
Synthesizers (aka Numerical Controlled Oscillators) that produce a 
sinusoidal output using a lookup table. One DDS is devoted to generate 
the frequency assigned to 0 and the other is used for the generation of 1’s 
frequency. The output width is by default 6 bits, all placed after the binary 
point. Since the first bit is the sign bit, only 5 bits are for magnitude. This 
means the output takes values from -0.5 to +0.5 and not from -1 to +1. 
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Key parameters: 
DDS clock rate (Mhz):100.0. This number must be at least twice the 
output frequency and at most 500 for the Virtex-4 target FPGA. According 
to Xilinx technical support email, the frequency of the DDS clock rate 
should match the parameter ‘FPGA clock period (ns)’ in Sysgen token. In 
this case FPGA clock period is 10ns, yielding a frequency of 100MHz. 
Frequency resolution (Hz):0.03.  
Output Function: Cosine 
Output Frequency array (MHz): [45.0] for the 1s and [40.0] for the 0s. 
These choices depend from the bit duration as well. The bit period of the 
encoded bits is 64*10 ns. For the two frequencies to be orthogonal as 
shown in Section A in Chapter II, their spacing must be a multiple of the 
bit rate. In this case the spacing of 5MHz is 3.2  times the bit rate 

8
. .

1R 10
64c b = and the frequencies are not orthogonal. 

Explicit period: T/128. The decision made was to use 64 samples of the 
sinusoid for every bit. Given that the bits at the entrance of the modulation 
Subsystem are at a period of ½, then the signal that would have the proper 
period is one with a value set to T/128. 
Noise Shaping (Under Advanced tab): Phase dithering [77]. This choice 
should improve the quality of the sinusoidal samples, minimizing the 
quantization error. 
DSP48 Use (Under Implementation Tab): Maximal. Given that DSP48 
cells are not used anywhere else in the transmitter, some of them can be 
sacrificed to increase the performance of this block. 

• MCode1: This block is used to execute simple assigned Matlab functions. 
The code is translated in VHDL or Verilog language during the synthesis 
phase. It only supports a small subset of the MATLAB language. In cases 
where this is a problem Xilinx AccelDSP Synthesis tool can be used to 
support a larger set of Matlab commands and to create custom IP blocks. 
MCode block only supports Xilinx fixed-point type. 

The function assigned to this block has to do with the initialization of the ‘Mux’ 
block. In order to avoid the propagation of undefined signals during the initiation 
phase, a state machine was written that delays the enable (en) of the ‘Mux’ block 
until the first bit of the preamble is detected at the input of the Modulation 
Subsystem. 

 
Code: 

function enable = state_machine(din,reset) 
  
% define the state variables. They will be retained to memory between 
% following runs. 
persistent state, state = xl_state(0,{xlUnsigned, 1, 0}); 
  
switch state  
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    case 0 
        if din == 1 %when the fisrt bit of the preamble is detected 
            state = 1; %go to the next state (enable high) 
        else 
            state = 0; 
        end 
        enable = xfix({xlBoolean},0); %xfix() translates values…  
                                      %to a Xilinx fixed-point type.   
    case 1 
        if reset ==xfix({xlBoolean},1) %check synchronous reset 
            state =0; 
            enable = xfix({xlBoolean},0);  
        else 
            enable = xfix({xlBoolean},1); %otherwise stay locked to… 
                                          %the same state (enable high) 
        end 
    otherwise 
        state = 0; 
        enable = xfix({xlBoolean},0); 
end 
 

• Up Sample: up samples input data by inserting zeros or copies of previous 
sample. It is used to make the sample rate of the ‘din’ and ‘reset’ signals 
compatible. System Generator does not accept a state machine with inputs 
of different sampling periods. 

Key parameters: 
Copy samples: enabled. 

• Shift: This block generally performs a left or right shift on the input. The 
purpose of this block is to amplify the signal before transmission. It should 
be noted that DDS blocks yield values from -0.5 to +0.5 and not from -1 to 
+1. 

Key parameters: 
Shift direction: Left. This direction is amplifying the signal. 
Number of bits (Shift direction): 2. This number is amplifying the signal 
by a factor of four. 
Number of bits (Output type):6. The total number of bits is not changing, 
only the decimal point. 
Binary point (Output type):4. The change of the position of the binary 
point reflects the shift made by the block. The previous binary point 
position of 6 has now changed to 4, meaning that the binary point shift is 
two places to the right. 
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E. RECEIVER (TOP LEVEL) 
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Figure 33 Receiver’s schematic diagram designed in Simulink/Sysgen environment. 

• System Generator: its existence is compulsory to every design. It defines 
the type of target FPGA, the FPGA clock period, and other key 
parameters. 

Key parameters: 
Part: Virtex4 xc4vlx25-10sf363.This is the target FPGA. 
FPGA clock period (ns):10. 
Clock pin location: A8. This choice depends from the actual pin that the 
mainboard provide the clock pulses and it is found in the board’s manual. 
This parameter is crucial for proper function of the design on the FPGA 
and post place and route simulation is not fisible if this parameter is not 
defined. 
Simulink system period (sec):t, where 910 10t −= i  defined in the Matlab 
Workspace. In contrast to the same block of the Transmitter, here the input 
is samples, not bits, which is the same as the fastest blocks in this design. 
Given that the time step of the Simulink simulation is t, one Simulink 
simulation period is equal to the reference period of the Xilinx model.  
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• Resource Estimator: It is a block that provides an estimate regarding the 
FPGA resources that are required to build the circuit. 

• From Workspace: inserts variables from Workspace.  Here, this variable 
is the stored output values of the Transmitter. 

Key parameters: 
Data: [(1:length(simout.signals.values))*t; [simout.signals.values]']' where 
simout.signals.values represents the output samples of the Transmitter. 

• Gateway In: converts the input to Xilinx fixed point type. The part of the 
design that is after this block is synthesized by System Generator. The 
block itself becomes a top level input port. 

Key parameters: 
Output type: Signed consisting of six bits with the binary point at the 
fourth position (from the left). The input is cosine samples amplified by a 
factor of four. This should match the output type of the Transmitter. 
Sample period: t. The block is working at the Simulink’s simulation period 
and at the reference period as well. 

• DDS Compiler v2 for 1s and DDS  Compiler v2 for 0s : Direct Digital 
Synthesizers (aka Numerical Controlled Oscillators) that produce a 
sinusoidal output using a lookup table. One DDS is devoted to generate 
the frequency assigned to 0 and the other is used for the generation of the 
1’s frequency. The output width is by default 6 bits, all placed after the 
binary point. Since the first bit is the sign bit, only 5 bits are for 
magnitude. This means the output takes values from -0.5 to +0.5 and not 
from -1 to +1. 

Key parameters: 
DDS clock rate (Mhz):100.0. This number must be at least twice the 
output frequency and at most 500 for the Virtex4 target FPGA. Here, the 
value matches the respective value of the transmitter. 
Frequency resolution (Hz):0.03.  
Output Function: Cosine 
Output Frequency array (MHz): [45.0] for the 1s and [40.0] for the 0s. 
These choices should match the values defined in the Transmitter. 
Explicit period: t. The block is working at the Simulink simulation period 
and at the reference period as well. 
Noise Shaping (Under Advanced tab): Phase dithering. This choice should 
improve the quality of the sinusoidal samples, minimizing the quantization 
error. 
DSP48 Use (Under Implementation Tab): Maximal. Given that DSP48 
cells are not used anywhere else in the receiver, some of them can be 
sacrificed to increase the performance of this block. 
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• Mult, Mult1, Mult2,  Mult3 : This block multiplies its two inputs. It 
should be noted that because the input from ‘Gateway In’ takes values 
from -2 to +2 and the input from DDS is from -0.5 to +0.5, the output is 
between 1± . 

Key parameters: 
Precision: full. 
Use embedded multipliers (Implementation): Enabled. This choice will 
make use of the DSP48 embedded cells to execute the operation faster. It 
also releases generic cells that can be used for a different purpose. 

• Relational: is a comparator that can support a plethora of different 
comparisons. Here, it compares the output of the two filters. When the 
output of the Non-Coherent Matched Filter for 1s is higher than the output 
of the Non-Coherent Matched Filter for 0s, then the decision is that 1 was 
transmitted.  

Key parameters: 
Comparison: a>b. 
Provide enable port: enabled. 
Latency: 1. Whenever the enable input is chosen, the latency must be one 
or more. 

• Constant2: Provides the enable signal to Relational. 

• Delay1: delay measured exactly to overcome initialization problems. 
Before the propagation of Constant2, the output of the delay is zero. 

• Gateway Out : It converts the Xilinx fixed point input to a Simulink 
compatible type. These blocks are synthesized in top level output ports. 

F. MATCHED FILTER SUBSYSTEM 
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Figure 34 NC Matched filter subsystem (one of two). 
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• Accumulator, Accumulator1 : Implement the integration concept in the 
discrete case. The integration must be over one bit period, thus 64 
consecutive samples from the mixers must be added. After 64 samples, a 
reset signal is expected to restart the same process for the next bit. The 
reset must be synchronized with the beginning of every bit. 

Key parameters: 
Operation: add. 
Output precision: 20 bits. Given that each input from the mixers cannot 
exceed a value of 1 and the adder adds 64 samples and assuming all values 
with the same sign, the sum cannot exceed 64. This value corresponds to 6 
bits for the integer part plus one for the sign. Given that the binary point is 
inferred from the input and is placed at the 10 position, the output should 
be at most 17 bits wide. Some extra bits are given. 

• FIFO2, FIFO3: description of the block as in Figure 31. The FIFOs here 
are used as a convenient way to capture the value of the accumulators just 
before the reset. A simple register with an enable port should be sufficient 
to yield the same result. Read enable (re) is always high. 

• Delay6, Delay11, Delay12, Delay15, Delay16 : Delays that ensure the 
timely propagation of the signals. 

• Down Sample 2, Down Sample 5: This block reduces the sample rate of 
the input, discarding the extra values provided in the highe r rate input. 
The capture of the output value of the accumulator by the FIFOs is made 
once per sixty-four sample periods. Given that this value is changing once 
per bit period (sixty-four sample periods) there is no need for the blocks 
after the FIFOs to run at sample period. 
Key parameters: 
Sampling rate (number of input samples per output sample): 64*t. 
Switching from samPle period to bit period. 
Sample: Last value of the frame. This choice was made due to less 
hardware needed for its implementation. This choice introduces at least 
one latency.  

• Mult4, Mu lt5: This block multiplies its two inputs. In this case the 
multiplication simulates the squaring operation by providing the same 
signal to both inputs of the block. 

Key parameters: 
Output type: Unsigned 31 bits with binary point at the tenth position. The 
multiplication may double the bits of the integer part. Given that six bits 
were calculated to be sufficient for the integer part after the accumulators, 
twelve bits are now needed for a total of 23 bits with the sign. Some extra 
bits are offered. 

• AddSub: This block implements the addition or subtraction operation. In 
this case, the addition of the two branches must be made. 
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G. CORRE LATOR’S SUBSYSTEM 
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Figure 35 Correlator’s Subsystem (one of two). 

• Initialization block : This is a custom block that resets the FIR filters at 
the beginning of the simulation and does not affect the circuit anymore. 
This need appeared after switching from the Xilinx FIR compiler block to 
the custom ‘FIR filter’ block, where the message for the propagation of 
indeterminate values appeared. It consists of a constant, a delayed constant 
and a comparator as shown in Figure 36. The ‘Relational’ finds input a 
higher than input b only at the first cycle of the simulation and at that 
instance sends a reset signal to the ‘FIR filter’ and ‘FIR filter 1.’ After the 
first cycle, the delayed ‘Constant2’ render to input ‘b’ a value that is equal 
to input ‘a’ of the ‘Relational,’ forcing ‘reset out’ to go low. It should be 
noticed that all constants are explicitly sampled in 64*t. 

 

Figure 36 Initialization block. 

• FIR filter, FIR filter1 : custom blocks that have the functionality of an 
accumulator that adds the last 64 values of its input. A detailed description 
is given in Section C.2 in Chapter V. 

• Delay1, Delay6 : see description of blocks ‘Delay6, Delay11, Delay12, 
Delay15, Delay16’ of Figure 34.  
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• Mult8, Mult9: see description of blocks ‘Mult4, Mult5’ of Figure 34.  

• AddSub4: see description of block ‘AddSub’ of Figure 34. 

Key parameters: 
Precision (Output Type): Full. 
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Figure 37 Decision Circuit. 

• AddSub2: block implements the addition or subtraction operation. In this 
case, the outputs of the correlators are subtracted. In contrast with the 
‘Relational’ block in Figure 33, not only the highest value, but also the 
exact value is needed. The result is supplied to the following ‘MCode’ to 
make decisions about the timing. 

Key parameters: 
Output type: 32 bits with the Binary point in the tenth position. No extra 
width is granted compared to the previous block. 

• Constant2, Delay1: Delayed Enable to correct initialization problems. 

Key parameters: 
Explicit period: t. This block and the blocks in the specific subsystem are 
running at the sample rate. 

• Counter3: A counter should be thought of as a clock with an adder. Its 
output can be usually used by comparators to enable or disable signals. In 
this case, ‘MCode’ is using the counter to time stamp incidents of interest. 
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Key parameters: 
Counter type: Free Running.  As the relative occurrence of the incidents is 
of interest, any reset in the middle of a preamble acquisition would destroy 
the synchronization process. A reset implemented in such a way as not to 
disturb this acquisition is highly recommended.  
Output type: Unsigned with 18 bits. A long width was chosen to 
accommodate the concept of a free running counter and to make any 
restart unlike. 

• Explicit period: t. This block and the blocks in the specific subsystem are 
running at the sample rate. The result of the subtraction of the Correlators’ 
output is examined at the sample rate. 

• MCode0: see description of block ‘MCode1’ of Figure 32. Here, 
‘MCode0’ is used to apply some countermeasure against noise. A typical 
maximum for the input waveform is at a value around 700. This block 
makes every input value that does not exceed a threshold equal to zero. In 
this way, small amount of noise will not be perceived as signal by the 
timing circuit, trying to lock at random noise values. Due to the fact that 
only positive values can trigger a synchronization phase, only the positive 
values are suppressed. 

Code: 

function [di] = pre(d) 
                            
if d<50 && d>0   %if the value of d does not exceed threshold... 
    di =0;       %...suppress output 
else 
    di =d;       %...otherwise, let input pass. 
End 
 

• MCode:   see description of block ‘MCode1’ of Figure 32. Here, ‘MCode’ 
incorporates the logic behind the bit synchronization. It also implements 
the granular packet synchronization. It includes a state machine where 
each state represents the next bit of the preamble expected to be received. 
Explicitly, the zero state is waiting for a reception of a 1, which is the first 
bit of the preamble. The state one is trying to identify a 0, which is the 
second bit of the preamble and so on. The state machine goes up to the 
fifth bit of the preamble and after that it locks the extracted 
synchronization timing value. 

The input waveform is maximized at the exact moment that all 64 samples 
of a 1 have been accounted for by the accumulator of the Correlator 
subsystem. The opposite holds for the 0s, where the waveform is 
minimized. The ‘MCode’ tries to match these maxima and minima to the 
preamble pattern. These maxima and minima also imply the end of a bit. 
The time that these occur help achieve the synchronization of the receiver.  
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The decision of the final timing of each packet is based on the mean value 
of the time of the third and fourth bit. This can change to include more 
bits. 

Code: 

function [total_sync, sync,  tsync, reset_counter] = 
state_receiver(din,tin) 
                            
persistent state, state = xl_state(0,{xlUnsigned, 3, 0}); 
persistent min, min = xl_state(0,{xlSigned, 32, 10}); 
persistent max, max = xl_state(0,{xlSigned, 32, 10}); 
persistent tsync1, tsync1 = xl_state(0,{xlUnsigned, 18, 0}); %to store  
       % time stamp of the acquisition of the first bit of the preamble 
persistent tsync2, tsync2 = xl_state(0,{xlUnsigned, 18, 0}); 
persistent tsync3, tsync3 = xl_state(0,{xlUnsigned, 18, 0}); 
persistent tsync4, tsync4 = xl_state(0,{xlUnsigned, 18, 0}); 
persistent tsync5, tsync5 = xl_state(0,{xlUnsigned, 18, 0}); 
  
switch state 
    case 0                   %Search for the first bit of the preamble. 
        if (tin-tsync1)<64   %For each max value found, search next 64  
                             %inputs to ensure no other maximum occurs.    
           if din >=max      %If other maximum found, store it... 
               max =din; 
               tsync1 =tin;  %...and wait again 64 samples to verify  
               min =max;     %this is the only maximum for the time. 
               tsync2 =tin; 
           else 
               if din <min    %Otherwise see if it is minimum to  
                   min =din;  %initialize correctly state 1.  
                   tsync2 =tin; 
               end      
           end 
           state =0; 
           sync = 0; 
           tsync =0; 
        else               %When no other maximum found in the given...  
            state =1;      %...time frame, go to next state. 
            sync = 1;      %sync high means that this tsync is going  
                           %actually to be used to extract timing  
                           %information. Otherwise the value of tsync  
                           %is ignored. 
            tsync =tsync1; %Give tsync to output. 
            max =min; 
        end 
        total_sync =xfix({xlBoolean},0); %Enabled when the fifth bit of  
                                         %the preamble is located 
        reset_counter =xfix({xlBoolean},0); %Not allow reset for the   
                                         %external counter (not used) 
    case 1                 %Search for the second bit of the preamble. 
        if (tin-tsync2)<64 %For each min value found, search next 64 
                           %inputs to ensure no other minimum occurs. 
            if din <=min   %If other minimum found, store it... 
                min =din; 
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                tsync2 =tin; 
                max =min; 
                tsync3 =tin; 
            else 
               if din >max    %Otherwise see if it is maximum to 
                   max =din;  %initialize correctly state 2. 
                   tsync3 =tin; 
               end  
            end 
            state =1; 
            sync = 0; 
            tsync =tsync1; 
        else               %When no other maximum found in the given...  
            state =2;      %...time frame, go to next state. 
            sync = 0;      %sync low means that this tsync is not going  
                        %to be used to extract timing information and  
                        %tsync will be ignored. 
            tsync =tsync2;%Give tsync to output. 
            min =max;  
        end 
        total_sync =xfix({xlBoolean},0); 
        reset_counter =xfix({xlBoolean},0); 
    case 2                 %Search for the third bit of the preamble. 
        if (tin-tsync3)<64 %and go through the procedure of state 0 
            if din >=max 
                max =din; 
                tsync3 =tin; 
                min =max; 
                tsync4 =tin; 
            else 
                if din <min 
                   min =din; 
                   tsync4 =tin; 
                end    
            end 
            state =2;   
            sync = 0; 
            tsync =tsync2; 
        else 
            sync = 1; 
            state =3; 
            tsync =tsync3; 
            max =min; 
        end 
        total_sync =xfix({xlBoolean},0); 
        reset_counter =xfix({xlBoolean},0); 
    case 3                 %Search for the forth bit of the preamble. 
        if (tin-tsync4)<64 %and go through the procedure of state 1 
            if din <=min  
                min =din; 
                tsync4 =tin; 
                max =min; 
                tsync5 =tin; 
            else 
                if din >max 
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                   max =din; 
                   tsync5 =tin; 
               end       
            end 
            state =3; 
            sync = 0; 
            tsync =tsync3; 
        else 
            sync = 1; 
            state =4; 
             
            tsync =xfix({xlUnsigned, 18, 0},(tsync3+tsync4)/2); % This   

% criteria was chosen. Different combinations of averaging  
% are also possible. 

            min =max; 
        end 
        total_sync =xfix({xlBoolean},0); 
        reset_counter =xfix({xlBoolean},0); 
    case 4                  %Search for the fifth bit of the preamble. 
         if (tin-tsync5)<64 %and go through the procedure of state 0 
             if din >=max 
                 max =din; 
                 tsync5 =tin; 
                 %no reset for the next step     
             %else 
                 %no store of min for the next step 
             end 
             state =4; 
             sync = 0; 
             tsync =xfix({xlUnsigned, 18, 0},(tsync3+tsync4)/2); % This   

 % criteria was chosen. Different combinations of averaging  
 % are also possible. 

         else 
             sync = 0; 
             state =5; 
             tsync =tsync5; 
             max = min; 
         end 
         total_sync =xfix({xlBoolean},0); 
         reset_counter =xfix({xlBoolean},0); 
    case 5                  %Stay locked waiting for the whole packet  
                            %to finish. 
        if (tin-tsync5)< 7872-12%The time to complete the reception of  
                               %128 bits given that tsync5 corresponds  
                               %to the 5th bit of the packet. 
           total_sync =xfix({xlBoolean},1); %The preamble (up to fifth  
                                            %bit)has been successfully  
                                            %located.  
           state =5; 
           sync =0;          %Lock the timing information. 
           reset_counter =xfix({xlBoolean},0); 
        else                 %Preparation to start over. 
            if (tin-tsync5)< 7872+56   
                total_sync =xfix({xlBoolean},0); 
                reset_counter =xfix({xlBoolean},0); 
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                state =5; 
                sync =0; 
            else             %Start over with the following parameters: 
                reset_counter =xfix({xlBoolean},1);  
                state =0; 
                total_sync =xfix({xlBoolean},0); 
                sync = 0; 
                max =0; 
                min =0; 
            end 
        end 
        tsync =tsync5; 
        tsync1 =tin; 
    otherwise                %escape state from unexpected condition. 
        state = 0;             
        sync = 0; 
        tsync =0; 
        total_sync =xfix({xlBoolean},0); 
        reset_counter =xfix({xlBoolean},0); 
end 
 

• Delay9: see description of blocks ‘Delay7, Delay1’ of Figure 30. 

• AddSub3, Constant7 : There is an inherent delay between the 
unprocessed samples at the input of the Correlators and the point where 
the timing decision is taken. To offset this fact a constant value is added to 
the synchronization time that has been calculated by ‘MCode.’ The exact 
value of ‘Constant7’ is calculated experimentally. 

Key parameters: 
Operation: addition. 
Constant value: 23. Experimentally calculated value. 

• Slice: This block extracts from the input only a specified portion of the 
word and presents it to the output. The operation implemented here is 
modulo 64. The remainder of the input value when divided by 64 is the six 
least significant bits. The timing information is supplied to a counter that 
counts up to 63. This is the reason that the absolute timing information 
must be translated to time modulo 64. 

Key parameters: 
Width of slice (number of bits): 6. 
Specify range as: Lower bit location +width. 
Relative to: LSB of input. 

• Delay 5 : Delays that ensure the timely propagation of the signals. It is 
common practice to have to insert delays between adjacent blocks. 

• Delay 10: delay that had been used for synchronization purposes. 
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• Convert1:  Translate the input to a desired output type. Enable and reset 
inputs can only be driven by Boolean signals. In this case ‘sunc’ signal is 
unsigned one bit integer and must be converted to Boolean. This block 
may not even require resources when mapped to the FPGA, depending on 
some parameters chosen. 

Key parameters: 
Type (Output precision): Boolean. 

• Register: is a D flip-flop with latency equal to one sample period. It 
provides an optional enabled port. When this port is used the register does 
not accept any new value from its input and continues to have the same 
output. 

Key parameters: 
Optional Ports: Provide enable port. Here the enable is the ‘sync’ output of 
the ‘MCode’ which means that a desired bit of the preamble has been 
detected. 

• Counter: A counter should be thought of as a clock with an adder. Its 
output can be usually used by comparators to enable or disable signals. In 
this case, the counter defines a 64 time cycle, within which the 
accumulators of the NC Matched Filter subsystems must be reset exactly 
once. The specific instance of the reset is defined by the value stored to 
the ‘Register’ and the reset signal is created by the comparison of the 
value of the counter with the value of the output of the ‘Register.’ 

Key parameters: 
Counter type: Count Limited. 
Count to value: 63. This defines the 64 time cycle. 
Number of bits: 6. To accommodate counting up to 63. 
Explicit period: 1. As the other components in this subsystem, the 
‘Counter’ works at the sample rate. 

• Relational1: is a comparator that can support a plethora of different 
comparisons. Here the comparison is made between the ‘Counter’ and the 
output of the ‘Register’ to define at which exact time instance the 
accumulators of the NC Matched Filter subsystems must be reset. 
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I. DECODING SUBSYSTEM 
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Figure 38 Decoding Subsystem. 

• Delay19, Delay20 : Delays that had been used for synchronization 
purposes, to synchronize ‘preamble end’ and ‘channel bits’ signals. Their 
values were found experimentally. 

Key parameters: 
Latency: 5 and 6, respectively. 

• Down Sample: This block reduces the sample rate of the input, discarding 
the extra values provided in the higher rate input. Here, it matches the 
sampling rate of ‘preamble end’ signal with that of ‘channel bits.’ 

• Counter1: see description of block ‘Counter3’ of Figure 37. The only 
different key parameter is the following: 

Key parameters: 
Explicit period: 64*t. This block and the blocks in the specific subsystem 
are running at the bit rate. All input signals have been downsampled by a 
factor of 64. 

• MCode: see description of block ‘MCode1’ of Figure 32. Here, ‘MCode’ 
makes the fine tuning of the packet synchronization. After receiving 
‘preamble end’ high from the ‘Timing Circuit,’ it checks the input bits to 
locate the first 1. This should be the last bit of the preamble. 
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Code: 

function we = preamble_detacher(clock,prbl_end,input_bit) 
  
persistent state, state = xl_state(0,{xlUnsigned, 1, 0}); 
persistent counter, counter = xl_state(0,{xlUnsigned, 16, 0}); 
persistent delay, delay = xl_state(0,{xlBoolean}); 
  
switch state 
    case 0                                 %Wait state. 
        if prbl_end == xfix({xlBoolean},1);%When timing circuit locates  
                                          %the 5th bit of the preamble, 
            if delay ==xfix({xlBoolean},0) %let one cycle to pass 
                delay =xfix({xlBoolean},1); 
            else 
                if input_bit == 1       %and search for an input bit =1 
                    state = 1;          %to go to the next state. 
                    counter =clock; 
                else 
                    state =0;           %While to find stay at the  
                end                     %current state... 
            end 
        else 
            state = 0; 
            counter =0; 
        end 
        we = xfix({xlBoolean},0);       %and output write enable low. 
    case 1                              %Packet under reception. 
        if clock-counter <120           %Until it counts 120 bits, 
            state = 1;                  %stay in the current state. 
        else 
             if prbl_end == xfix({xlBoolean},1);% Verify that 'preamble  
                                                %end' signal when low 
                 state =1;                       
             else 
                state = 0;              %and go to the wait state’ 
                counter =0; 
                delay =xfix({xlBoolean},0);     %resetting the flag. 
             end 
        end 
        we = true; 
    otherwise                  %escape state from unexpected condition. 
        state = 0; 
        we = xfix({xlBoolean},1); 
        delay =xfix({xlBoolean},0); 
end 

• Convert: Translate the input to a desired output type. The output of the 
‘Relational’ block is Boolean and must be translated to an unsigned one 
bit integer in order to drive the next blocks. 

• FIFO4: It is a First In First Out memory queue. The input values engage 
the  next available memory location in the memory queue. This function is 
permitted whenever the write enable (we) signal is high; otherwise, the 
input data is discarded. In this case, ‘we’ is driven by the ‘we’ output of 
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‘MCode.’ The read enable (re) signal is a delayed high. This allows the 
encoded bits to appear at the input of the Modulation Subsystem. Outputs 
‘empty,’ ‘%full’ and ‘full’ are not used and are terminated by ‘T,’‘T 1,’‘T 
2’ blocks. 

Key parameters: 
Depth: 256. 

• Constant5, Dealy4: The input sequence of bits is stored but it is read with 
delay in order to accommodate the preamble bits that are screened from 
the stored sequence. For a larger number of received packets, the value of 
‘Delay4’ should be increased. Any failure of the delay to account for all 
the preambles taken away will distort the output sequence by creating 
copies of the previous bit to the output in order to fulfill the time gaps. 
Another solution would be to place the decoder with an enable at that 
point. The enable could be driven by the write enable (we) output of 
‘MCode’ and whenever it was low, it would freeze the Viterbi Decoder 
until the next enable high. 

Key parameters: 
Constant value: 1. 
Delay value (Latency): 100. This number could be lower for fewer 
received packets or higher for more received packets. 

• T, T1, T2, T3 : terminate their inputs to avoid warning messages. This 
means that their inputs are not useful in this design. 

• Time Division Demultiplexer : This block breaks the input stream to 
multiple output streams according to the sampling pattern specified. The 
outputs are downsampled compared to the input. 

Key parameters: 
Frame sampling pattern: [1 1]. Every second input bit is presented to the 
same output. 
Implementation: Multiple Channel.  

• Viterbi Decoder v 6_0 : This decoder decodes convolutionally encoded 
data. The block has a green color to emphasize the fact that an extra 
license is needed to use it. For the purpose of this project, a 90 days free 
license was granted by the online site of Xilinx. The same parameters used 
in the Convolutional Encoder block must be specified here as well. Extra 
capabilities like soft decision decoding and puncturing are offered but 
were not used. 

Key parameters: 
Constraint length: 3. 
Convolutional code array 1 (octal):[7 5]. 
Coding: Hard 
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• Constant: Drives the ‘vin’ of ‘Viterbi Decoder v6_0’ always high. 

• Sample Time2, Display2 : See description of block ‘Sample Time1’ of 
Figure 28 

• To Workspace, To Workspace1 : see description of block ‘Workspace1’ 
of Figure 30. These are custom blocks to include both ‘Gateway Out’ and 
‘To Workspace’ to fit easier in the design. 

Key parameters: 
Variable name: pre_Viterbi_decoder, after_Viterbi_decoder, respectively. 
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APPENDIX C. MATLAB VERIFICATION CODE 

The Matlab code written to verify the decision signal shown in ‘Scope3’ of Figure 

37 as the input of the ‘MCode’ block is given in this chapter. The decision circuit is the 

most critical part of the receiver, thus, a reproduction of the simulation results of the 

Sysgen was important. This code helped locate the problem related to the Digital Discrete 

Synthesizers mentioned in Section B.2, Chapter V. 
clear din 
tstep =10*10^-9;           %define the simulation step. 
simulation_length =300000; %define the length of the simulation. 
f1 =45*10^6; 
f2 =40*10^6; 
time =0:tstep:simulation_length*tstep; 
input =simout.signals.values(1:simulation_length+1)'; 
h =ones(1,64); 
x_sin =input.*(.5*sin(2*pi*f1*time)); 
x_cos =input.*(.5*cos(2*pi*f1*time)); 
% x_sin =[xsin.signals.values];% In case the output  of the Sysgen ... 
% x_cos =[xcos.signals.values];% after the mixers is used. 
x_branch =conv(x_sin,h).^2+conv(x_cos,h).^2; 
  
y_sin =input.*(.5*sin(2*pi*f2*time)); 
y_cos =input.*(.5*cos(2*pi*f2*time)); 
% y_sin =[ysin.signals.values];% In case the output  of the Sysgen ... 
% y_cos =[ycos.signals.values];% after the mixers is used. 
y_branch =conv(y_sin,h).^2+conv(y_cos,h).^2; 
din =x_branch-y_branch; 
din = (din>50 | din<0).*din; 
din =[zeros(75,1); din']; %insert a small delay to match the Sysgen 
output. 
%din =[zeros(108,1); din']; 
figure(1) 
subplot(2,1,1),plot(din) 
title('Decision Signal ') 
xlabel('time(sec)') 
ylabel('amplitude') 
xlim([0 simulation_length]) 
state =0; 
max =0;min =0;tsync_plot =0; 
k =0;%point counter of tsync 
kk =0;%point counter of tsync_plot 
tsync1 =150;tsync2 =150;tsync3 =150;tsync4 =150;tsync5 =150;%Initialize 
tsync =zeros(1,6); 
for tin =181:length(din) 
switch state 
    case 0 % Search for the first bit of the preamble. 
        if (tin-tsync1)<64%For each max value found, search next 64  
                          %inputs to ensure no other maximum occurs. 
            if din(tin) >=max%If other maximum found, store it... 
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               max =din(tin); 
               tsync1 =tin;%...and wait again 64 samples to verify 
               min =max;   %this is the only maximum for the time.          
               tsync2 =tin; 
           else 
               if din(tin) <min%Otherwise see if it is minimum to 
                   min =din(tin);%initialize correctly state 1. 
                   tsync2 =tin; 
               end      
           end 
           state =0; 
           sync = 0; 
           tsync(1+k) =0; 
        else%When no other maximum found in the given... 
            state =1;%...time frame, go to next state. 
            sync = 1;%sync high means that this tsync is going 
                     %actually to be used to extract timing  
                     %information. Otherwise the value of tsync is 
                     %ignored. 
            tsync_plot(1+kk) =tsync1; 
            tsync(1+k) =tsync1; %Give tsync to output. 
            max =min; 
        end 
        total_sync =0;%Enabled when the fifth bit of the 
                      %preamble is located 
    case 1%Search for the second bit of the preamble. 
        if (tin-tsync2)<64%For each min value found, search next 64 
                          %inputs to ensure no other minimum occurs. 
            if din(tin) <=min%If other minimum found, store it... 
                min =din(tin); 
                tsync2 =tin; 
                max =min; 
                tsync3 =tin; 
            else 
               if din(tin) >max%Otherwise see if it is maximum to 
                   max =din(tin);%initialize correctly state 2. 
                   tsync3 =tin; 
               end  
            end 
            state =1; 
            sync = 0; 
            tsync(2+k) =tsync1; 
        else         %When no other maximum found in the given... 
            state =2;%...time frame, go to next state. 
            sync = 1;%sync high means that this tsync is going  
                     %actually to be used to extract timing  
                     %information. Otherwise the value of tsync is 
                     %ignored. 
            tsync_plot(2+kk) =tsync2; 
            tsync(2+k) =tsync2;%Give tsync to output. 
            min =max;   
        end 
        total_sync =0; 
    case 2%Search for the third bit of the preamble. 
        if (tin-tsync3)<64%and go through the procedure of state 0 
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            if din(tin) >=max 
                max =din(tin); 
                tsync3 =tin; 
                min =max; 
                tsync4 =tin; 
            else 
                if din(tin) <min 
                   min =din(tin); 
                   tsync4 =tin; 
                end    
            end 
            state =2;   
            sync = 0; 
            tsync(3+k) =tsync2; 
        else 
            sync = 1;%sync low means that this tsync is not going  
                     %to be used to extract timing information and  
                     %tsync will be ignored. 
            tsync_plot(3+kk) =tsync3; 
            state =3; 
            tsync(3+k) =tsync3; 
            max =min; 
        end 
        total_sync =0; 
    case 3%Search for the forth bit of the preamble. 
        if (tin-tsync4)<64%and go through the procedure of state 1 
            if din(tin) <=min  
                min =din(tin); 
                tsync4 =tin; 
                max =min; 
                tsync5 =tin; 
            else 
                if din(tin) >max 
                   max =din(tin); 
                   tsync5 =tin; 
               end       
            end 
            state =3; 
            sync = 0; 
            tsync(4+k) =tsync3; 
        else 
            sync = 1; 
            state =4; 
            %Choose a criterion for timing  
            tsync_plot(4+kk) =tsync4; % Store time that the decision is                
                                      % taken  
            tsync(4+k) =(tsync4+tsync1)/2; % Timing decision 
            min =max; 
        end 
        total_sync =0; 
    case 4%Search for the fifth bit of the preamble. 
         if (tin-tsync5)<64%and go through the procedure of state 0 
             if din(tin) >=max 
                 max =din(tin); 
                 tsync5 =tin; 
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                 %no reset for the next step     
             %else 
                 %no store of min for the next step 
             end 
             state =4; 
             sync = 0; 
             %The criterion chosen in case 3 
             tsync(5+k) =(tsync4+tsync1)/2; 
         else 
             sync = 1; 
             state =5; 
             %Choose a criterion for final time 
             tsync_plot(5+kk) =tsync5; % Store time that the decision                  
                                       % is taken 
             tsync(5+k) =(tsync3+tsync4)/2; % Timing decision 
             max = min; 
         end 
         total_sync =0; 
    case 5               %Stay locked waiting for the whole packet  
                         %to finish. 
        if (tin-tsync5)< 7872-12%the time to complete the reception of  
                            %128 bits given that tsync5 corresponds to  
                            %the 5th bit of the packet. 
           total_sync =1;%The preamble (up to the fifth 
                         %bit)has been successfully located. 
           state =5; 
           sync = 0; %Lock the timing information. 
        else   %Preparation to start over. 
            if (tin-tsync5)< 7872+32 
                total_sync =0; 
                state =5; 
                sync =0; 
            else %Start over with the following parameters: 
                state =0; 
                total_sync =0; 
                sync = 0; 
                max =0; 
                min =0; 
                k =k+6;%point counter of tsync 
                kk =kk+6;%point counter of tsync_plot 
                %tsync(6+k) =tsync5; 
                %tsync1 =tin; 
            end 
            tsync(6+k) =tsync5; 
            tsync1 =tin; 
        end     
    otherwise%escape state from unexpected condition. 
        state = 0; 
        sync = 0; 
        tsync(k) =0; 
        total_sync =0;  
end 
end 
subplot(2,1,2),plot(tsync_plot,ones(1,length(tsync_plot)),.’') 
title('Preamble Detection Signal(tsync)') 
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xlabel('time(sec)') 
ylabel('amplitude') 
xlim([0 simulation_length])  
ylim([0 1.5]) 
tsync_final =mod(tsync+23,64); 
figure(2) 
plot(tsync_final) 

 

 

 



 96

THIS PAGE INTENTIONALLY LEFT BLANK 



 97

LIST OF REFERENCES

 
[1] J. Mitola, I11, “Software Radios Survey, Critical Evaluation and Future 

Directions,” IEEE AES Systems Magazine, April 1993. 

[2]  Friedrich K. Jondral, “Software-Defined Radio: Basics and Evolution to 
Cognitive Radio,” EURASIP Journal on Wireless Communications and 
Networking, vol. 5, Issue 3, pp. 275 - 283, 2005. 

[3] Chris Dick, “A Case for Using FPGAs in SDR PHY,” Chief DSP Architect and 
Director, Xilinx Inc., http://www.eetimes.com/story/OEG20020809S0049 
(Accessed September 17, 2008). 

[4]  Bernard Sklar, Digital Communications: Fundamentals and Applications, 2nd 
edition, Prentice Hall, 2001.  

[5]  Ralph Robertson, Notes for EC3510 (BFSK), Naval Postgraduate School, 2007, 
(Unpublished). 

[6] Michael Rice, Digital Communications: A Discrete-Time Approach, Pearson 
Prentice Hall, 2008, p. 434. 

[7]  P. Elias, “Coding for Noisy Channels,” IRE Conv. Rec., 1955, pp. 4:37-47. 

[8]  Amphion Data Sheet, 
digchip.com/datasheets/download_datasheet.php?id=240970&part-
number=CS3311AA (Accessed September 17, 2008). 

[9] A.J. Viterbi, “Error Bounds for Convolutional Codes and an Asymptotically 
Optimum Decoding Algorithm,” IEEE Trans. Inform. Theory, IT-13: 260-69, 
April 1967.  

[10] Shu Lin and Daniel J. Costello, Error Control Coding, Prentice Hall, 2004. 

[11] Xilinx online documentation, ISE Design Suite 10.1 – ISE Foundation, 
http://www.xilinx.com/publications/prod_mktg/pn0010867.pdf (Accessed 
September 17, 2008). 

[12]  Xilinx Online Documentation, System Generator for DSP, Getting Started Guide, 
Release 10.1.2, June 2008, 
http://www.xilinx.com/support/documentation/sw_manuals/sysgen_gs.pdf 
(Accessed September 17, 2008). 



 98

 
[13]  Xilinx Online Documentation, System Generator for DSP, Reference Guide, 

Release 10.1.2, June 2008, 
http://www.xilinx.com/support/documentation/sw_manuals/sysgen_ref.pdf 
(Accessed September 17, 2008). 

[14]  Xilinx Online Documentation, IP Cores Documentation, 
http://www.xilinx.com/support/documentation/ipcores_docs.htm (Accessed 
September 17, 2008). 

[15]  Xilinx Online Documentation, Xilinx ISE Overview, 
http://toolbox.xilinx.com/docsan/xilinx10/isehelp/isehelp_start.htm (Accessed 
September 17, 2008). 

[16]  Avnet, Xilinx® Virtex™-4 LX LC Development Kit, 
http://www.em.avnet.com/evk/home/0,1719,RID%253D0%2526CID%253D2543
7%2526CCD%253DUSA%2526SID%253D32214%2526DID%253DDF2%2526
LID%253D32232%2526BID%253DDF2%2526CTP%253DEVK,00.html 
(Accessed September 17, 2008). 

[17] Avent Electronics Marketing, 
http://www.em.avnet.com/ctf_shared/evk/df2df2usa/MemecP160AnalogModule.pdf 
(Accessed September 17, 2008). 

[18] Universitetet i Stavanger, Norway, 
http://www.ux.uis.no/~karlsk/MIK200/dok/P160Analog_UserGuide_1_2.pdf 
(Accessed September 17, 2008). 

[19]  Xilinx Online Documentation, Manuals and Help, 
http://toolbox.xilinx.com/docsan/xilinx10/books/manuals.pdf (Accessed 
September 17, 2008). 

[20]  Xilinx Online Documentation, System Generator for DSP Help Page, 
http://www.xilinx.com/support/documentation/sw_manuals/sysgen_bklist.pdf. 
(Accessed September 17, 2008). 

[21]  Xilinx Online Documentation, IP Release Notes Guide, 
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf 
(Accessed September 17, 2008). 

[22]  Xilinx Online Documentation, DDS Documentation 
http://www.xilinx.com/support/documentation/ip_documentation/dds_ds558.pdf 
p. 20, (Accessed September 17, 2008). 

[23]  Xilinx Online Documentation, Virtex-4 Family Overview 
http://www.xilinx.com/support/documentation/data_sheets/ds112.pdf (Accessed 
September 17, 2008). 



 99

 
[24]  Dimitris G. Manolakis, Dimitris Manolakis, Vinay K. Ingle, and Stephen M. 

Kogon, Statistical and Adaptive Signal Processing, Artech House, 2005. 

[25]  Michael Rice, Digital Communications: A Discrete-Time Approach, Pearson 
Prentice Hall, 2008, p. 411. 

[26] John G. Proakis, Digital Communications, Fourth Edition, McGraw-Hill, 2000.  

[27]  Simon Haykin and Michael Moher, Introduction to Analog & Digital 
Communications, Wiley, 2nd edition, 2007, pp. 233-244. 

[28] Cryptologic Research Laboratory, Research Associate Donna Miller, Code EC, 
Monterey, CA. 

[29]  Xilinx, http://www.xilinx.com/company/history.htm (Accessed September 17, 
2008). 

[30]  William S. Carter, “The Dramatic Changes in FPGA Technology,” Vice President 
and Chief Technology Officer, Xilin Inc. 
http://www.techonline.com/learning/course/100043 (Accessed September 17, 
2008). 

[31]  FPGA-guide.com, http://www.fpga-guide.com/technology_frame.html (Accessed 
September 17, 2008). 

[32]  Ruđer Bošković Institute, 
http://www.irb.hr/en/cir/education/courses/fpga/FPGA/fpga_sklopovi/ (Accessed 
August 9, 2008). 

[33]  Actel’s Presentation, “ProAsic3Actel’s 3rd Generation Flash FPGA Family,” in 
NPS Course EC3800, Instructor Peter Ateshian, September 2007. 

[34]  The 3-D Circuits & Systems Group @ MIT, MIT Webpage, 
http://mtlweb.mit.edu/researchgroups/icsystems/3dcsg/ (Accessed August 9, 
2008). 

[35]  Gina R. Smith, “The art of FPGA Construction,” CEO, Brown-Smith Research 
and Development Laboratory Inc. http://www.embedded.com/design/ 
embeddedfpga/205203954 (Accessed September 17, 2008). 

[36]  Rodger Hosking and Richard Kuenzler, “Embedding FPGAs in DSP-driven 
Software Defined Radio Applications,” Vice Pres., Pentec Inc., 
http://www.embedded.com/columns/technicalinsights/164302833 (Accessed 
September 17, 2008). 



 100

 
[37] Paul Ekas, “FPGAs versus DSPs: Effective Implementations of 3G Basestations,” 

Tech Rep., Altera Corp., http://www.eetimes.com/story/OEG20021107S0025. 
(Accessed September 17, 2008). 

[38]  Rick Mosher, “FPGA to ASIC Strategy for Communication SoC Designs,” AMI 
Semiconductor, http://www.design-reuse.com/articles/4360/fpga-to-asic-strategy-
for-communication-soc-designs.html (Accessed September 17, 2008). 

[39]  William Wong, “Embedded 32-Bit Cores Hit 1 GHz,” Electronic Design 
Magazine, October 2007, http://electronicdesign.com/Articles/ArticleID/ 
17279/17279.html (Accessed September 17, 2008). 

[40[  Xilinx, Virtex-5 Multi-Platform FPGA, 
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex5/index.htm 
(Accessed September 17, 2008). 

[41] Altera, Stratix III Device Family, http://www.altera.com/products/devices/stratix-
fpgas/stratix-iii/st3-index.jsp  (Accessed September 17, 2008).  

[42]  Altera, “Altera Announces Industry’s First 40-nm FPGAs and HardCopy ASICs,” 
Press Release, http://www.altera.com/corporate/news_room/releases/products/nr-
stratix-iv-hardcopy-iv.html (Accessed September 17, 2008). 

[43] “FPGAs vs. DSPs: A Look at the Unanswered Questions,” BTDI, 
http://www.dspdesignline.com/howto/196802403;jsessionid=UJ5L5KRC31QFW
QSNDLPSKH0CJUNN2JVN?pgno=1 (Accessed September 17, 2008). 

[44]  Jerry Bickle, “Achieving Optimized Portable Code through SDR MDD Tools,” 
Tech. Rep., PrismTech Corporation, 
,http://www.portabledesign.com/article?article_id=38. (Accessed September 17, 
2008). 

[45]  Actel, Cortex-M1 Processor, The ARM® Processor Designed for FPGAs, 
http://www.actel.com/products/mpu/cortexm1/default.aspx (Accessed August 9, 
2008). 

[46]  Xilinx Inc., 
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex5/ 
capabilities/PowerPC_440.htm (Accessed August 9, 2008). 

[47]  Intel, Online Page, 
http://www.intel.com/technology/atom/index.htm?iid=tech_micro+atomand 
(Accessed September 17, 2008). 

[48]  Via, VIA Nano™ Processor, http://www.via.com.tw/en/products/processors/nano/ 
(Accessed August 9, 2008). 



 101

 
[49] Texas Instruments, Fixed Point Digital Signal Processor, 

http://focus.ti.com/docs/prod/folders/print/tms320c6455.html (Accessed August 
9, 2008). 

[50]  Freescale Semiconductor Inc., “MSBA8100: Multi-Standard Baseband 
Accelerator,” 
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MSBA8100 
(Accessed August 9, 2008). 

[51] Carolyn Mathas, “Benchmark Scores Validate Freescale DSP,” 
http://www.networksystemsdesignline.com/showArticle.jhtml;jsessionid=RHQP
W2E52ORZ2QSNDLPCKHSCJUNN2JVN?articleID=192203535 (Accessed 
September 17, 2008). 

[52] “FPGAs vs. DSPs: A Look at the Unanswered Questions,” BTDI, 
http://www.dspdesignline.com/howto/196802403;jsessionid=UJ5L5KRC31QFW
QSNDLPSKH0CJUNN2JVN?pgno=1 (Accessed September 17, 2008). 

[53]  Douang Phanthavong, “Fast Track to DSP,” Product Marketing Engineer, Mentor 
Graphics Corporation, Revised August 2006, 
http://www.mentor.com/techpapers/fulfillment/upload/mentorpaper_11937.pdf 
(Accessed September 17, 2008). 

[54]  Rodger Hosking and Richard Kuenzler, “Embedding FPGAs in DSP-driven 
Software Defined Radio Applications,” Vice Pres., Pentec Inc. 
http://www.embedded.com/columns/technicalinsights/164302833 (Accessed 
September 17, 2008).  

[55] Dave Locke, “Do Legwork before Making ASIC Move,” Marketing Manager, 
AMI Semiconductor, 
http://www.commsdesign.com/showArticle.jhtml;jsessionid=Z2YXAEAYXQ4A
SQSNDLPCKH0CJUNN2JVN?articleID=16503876 (Accessed September 17, 
2008). 

[56]  Arun Kottolli, “The Economics of Structured- and Standard-Cell-ASIC Designs,” 
Technical Solutions Engineer, Open-Silicon, 
http://www.edn.com/article/CA6313388.html (Accessed September 17, 2008).   

[57] Vaughn Betz, “FPGAs and Structured ASICs Overview & Research Challenges,” 
Director, Software Engineering, Altera Corp., 
www.iic.umanitoba.ca/docs/vaughn-
betz.ppt?PHPSESSID=1b34dbb389a16a17339c6dd60acde5c4 (Accessed 
September 17, 2008). 



 102

 
[58]  Hong-Swee Lim, “High Performance DSP Solutions for Ultrasound,” Tech. Rep., 

Xilinx, http://www.eetchina.com/STATIC/PDF/200805/EETC-
CMET.pdf?SOURCES=DOWNLOAD (Accessed September 17, 2008). 

[59] Xilinx Online Page, 
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex5/capabilities
/dsp48e.htm (Accessed September 17, 2008). 

[60]  Steve Bush, “Altera FPGAs Get ColdFire Soft Core,” Technology Editor, 
electronicsweekly.com, 
http://www.electronicsweekly.com/Articles/2008/06/09/43894/altera-fpgas-get-
coldfire-soft-core.htm (Accessed September 17, 2008). 

[61]  Xilinx Online Page, PowerPc 440 / Virtex 5, 
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex5/capabilities
/PowerPC_440.htm (Accessed September 17, 2008). 

[62] Xiaojun Wang and Nelson, B.E., Field-Programmable Custom Computing 
Machines, 2003, FCCM 2003, 11th Annual IEEE Symposium on 9-11 April 
2003, pp. 195 – 203. 

[63]  Alex Soohoo, “Do's and Don'ts of Architecting the Right FPGA Solution for DSP 
Design,” Tech. Rep., Altera, 
http://www.pldesignline.com/showArticle.jhtml;jsessionid=DCNXFCN2NQTSIQ
SNDLPCKHSCJUNN2JVN?articleID=170702837 (Accessed September 17, 
2008).  

[64]  Tom Hill, “Heterogeneous Hardware Platforms Capitalize on DSP/FPGA 
Capabilities,” Tech. Rep., Xilinx, http://www.dsp-fpga.com/articles/id/?2900 
(Accessed September 17, 2008). 

[65] David Lau, Jarrod Blackburn, and Joel A. Seely, “The Use of Hardware 
Acceleration in SDR Waveforms,” Tech Rep., Altera,  
http://www.altera.com.cn/literature/cp/cp_sdr_hardware_acceleration.pdf 
(Accessed September 17, 2008). 

[66]  Jeffry Milrod, “Hybrid FPGA/DSP architecture: The Optimal Solution,” 
President, Bittware, Inc., http://www.dsp-fpga.com/pdfs/BittWare.RG06.pdf 
(Accessed September 17, 2008). 

[67]  Alex Soohoo, “Architecting the right FPGA Solution for Your DSP Design,” 
September 15, 2005, Embedded.com, 
http://www.embedded.com/columns/technicalinsights/170703025 (Accessed 
September 17, 2008). 



 103

 
[68]  Jeffry Milrod, “The Future of High-Performance COTS Signal Processing: 

Hybrid FPGA/DSP Architecture:  The Optimal Solution,” DSP-F_GA.com, 2006, 
http://www.dsp-fpga.com/pdfs/BittWare.RG06.pdf (Accessed September 17, 
2008). 

[69]  Texas Instruments, “Texas Instruments’ Software Defined Radio Development 
Platform Makes Rapid Development and Optimization of Multi-Protocol Radios 
Possible,” Press Release,  
http://focus.ti.com/docs/pr/pressrelease.jhtml?prelId=sc06196 (Accessed 
September 17, 2008). 

[70]  David Pellerin and Scott Thibault, Practical FPGA Programming in C, Prentice-
Hall, Inc., April 2005. 

[71]  Easic, nextreme2, “Nextreme-2 NEW ASIC Overview,” 
http://www.easic.com/index.php?p=nextreme2-overview (Accessed September 
17, 2008). 

[72]  Easic, Technology Overview, http://www.easic.com/index.php?p=technology 
(Accessed August 9, 2008). 

[73]  Easic, nextreme Structured ASIC, 
http://www.easic.com/pdf/asic/nextreme_asic_structured_asic.pdf (Accessed 
August 9, 2008). 

[74] picoChip, picoGcc Reference Manual, 
http://www.picochip.com/downloads/picoGcc_reference_manual.pdf (Accessed 
September 17, 2008). 

[75]  picoChip, picoArrary Architecture, 
http://www.picochip.com/products_and_technology/picoarray_architecture 
(Accessed August 9, 2008). 

[76]  David Lipets, “Hardware Needs Limit Software Radio,” Tadiran Communications 
Ltd, March 7, 2008, 
http://www.rfdesignline.com/206902442;jsessionid=J4XHRTBWNOPIIQSNDLP
CKH0CJUNN2JVN (Accessed September 17, 2008). 

[77] Jeffrey H. Reed, Software Radio, A Modern Approach to Radio Engineering, 
Prentice Hall, 2002.  



 104

 

THIS PAGE INTENTIONALLY LEFT BLANK 



 105

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California  
 

3. Assistant Professor  Frank Kragh 
Naval Postgraduate School 
Monterey, California 
 

4. Instr. Peter Ateshian 
Naval Postgraduate School 
Monterey, California 
 

5. Prof. Roberto Cristi 
Naval Postgraduate School 
Monterey, California 
 

6. Assistant Professor  Alexander Julian 
Naval Postgraduate School 
Monterey, California 
 

7. Prof. Herschel Loomis 
Naval Postgraduate School 
Monterey, California 
 

8. Prof. Alan Ross 
Naval Postgraduate School 
Monterey, California 

 
9. Research Associate Donna Miller 

Naval Postgraduate School 
Monterey, California 


